




#### PROJECT PURPOSE AND SCOPE

<u>Project Purpose</u>: 20-year study (2024-2043) to determine impact of achieving 100% renewable energy and capacity by 2030.

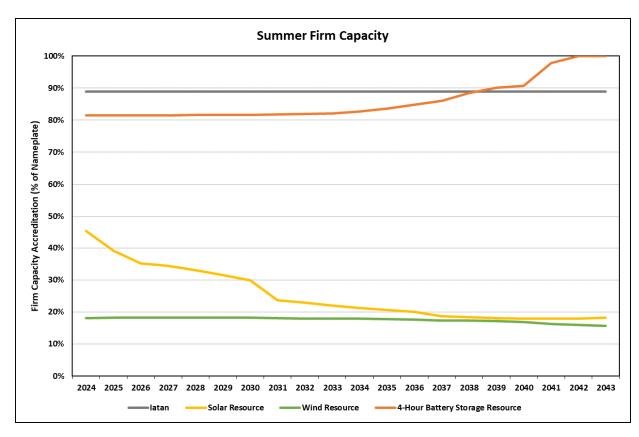
#### **Project Scope:**

- Base Case
- Scenarios
  - Alternate case 1 100% renewable energy to serve CMWL load by 2030. Renewable energy credits (RECs) cannot be used to meet this
    requirement.
  - Alternate case 2 Same as alternate case 1, but RECs are used to meet the requirement.
  - Alternate case 3 Same as alternate case 1, but all coal resources are divested as soon as possible.
  - Alternate case 4 Same as alternate case 1, but all thermal resources are divested/retired as soon as possible.
  - Alternate case 5 Same as alternate case 1, with Sikeston retires early.

### **SCENARIO OVERVIEW**

| Scenarios  | 100% Renewable<br>Requirement by<br>2030 | Use of RECs? | Divest Coal<br>Resources | Retire Natural Gas<br>Resources | Retire Sikeston |
|------------|------------------------------------------|--------------|--------------------------|---------------------------------|-----------------|
| Base Case  | No                                       | No           | No                       | No                              | No              |
| Alt Case 1 | Yes                                      | No           | No                       | No                              | No              |
| Alt Case 2 | Yes                                      | Yes          | No                       | No                              | No              |
| Alt Case 3 | Yes                                      | No           | Yes                      | No                              | Yes             |
| Alt Case 4 | Yes                                      | No           | Yes                      | Yes                             | Yes             |
| Alt Case 5 | Yes                                      | No           | No                       | No                              | Yes             |

Renewable energy credit (REC) – A tradable commodity representing 1 MWh of electricity generated from renewable sources.


7/11/2023 \_\_\_\_\_TEA\_\_\_\_

# **MODEL ASSUMPTIONS**

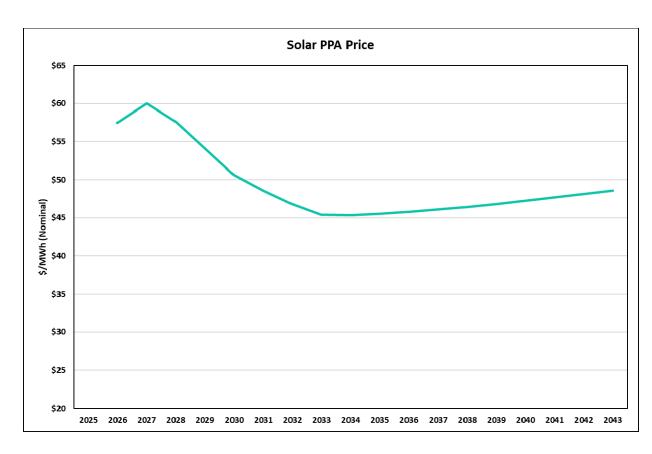
#### **CAPACITY DEFINITIONS REVIEW**

- Nameplate capacity The maximum rated output of a generator.
  - Units are MW.
- Firm capacity A measure of a generators ability to provide power to the grid when needed.
  - Calculated by MISO for planning requirements.
    - o Columbia's total firm capacity must be at or above forecasted peak load plus a reserve margin (7.4% during the summer season).
  - Units are MW.
- Bilateral capacity Firm capacity that is purchased directly from another utility/resource owner.
  - Purchased when additional firm capacity is needed to meet planning requirements.
  - This purchase can be long-term (10+ years) or short-term (one year/one season).
  - Units are MW.

### FIRM CAPACITY FOR RENEWABLES

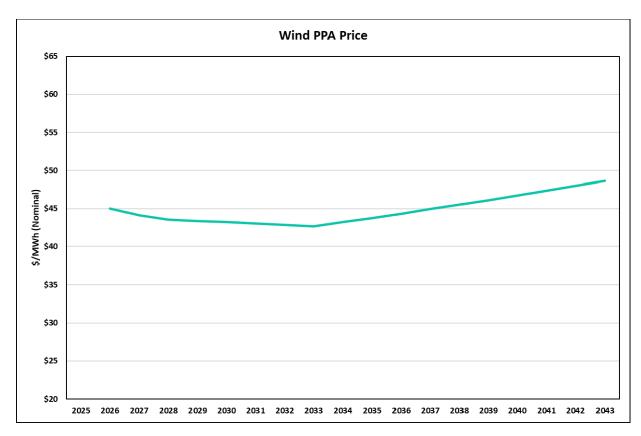


- Renewable resources are assumed to receive firm capacity based on performance during high-risk periods.
  - Known as Effective Load Carrying Capacity.
  - Based on MISO's <u>2022 Regional</u> Resource Assessment.
  - Change over time is due to changes in generation mix on MISO's system.
- Thermal resource firm capacity is assumed to remain flat throughout the study.


### **RESOURCE OPTIONS**

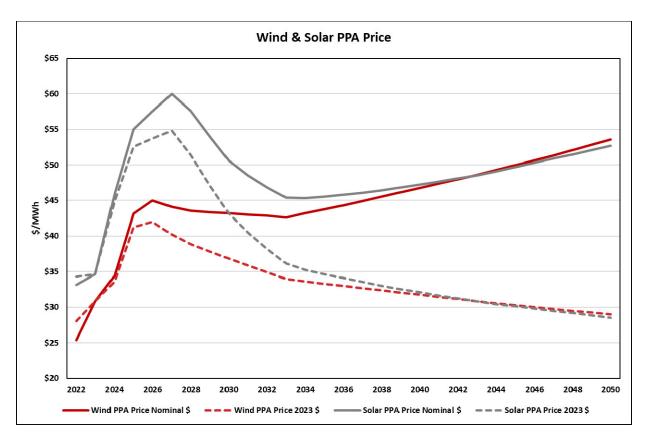
| Resource Option                 | Fuel Type   | Variable O&M<br>(\$/MWh) | Fixed O&M<br>(\$/kW-yr) | Nameplate<br>Capacity (MW) | Contract Length<br>(years) | Lead Time<br>(years) |
|---------------------------------|-------------|--------------------------|-------------------------|----------------------------|----------------------------|----------------------|
| Solar PPA                       | Solar       | 57.50                    | 0                       | 50                         | 15                         | 3                    |
| Wind PPA                        | Wind        | 45.00                    | 0                       | 50                         | 15                         | 3                    |
| Battery Storage<br>PPA (4-Hour) | Lithium-Ion | 0                        | 138                     | 25                         | 15                         | 3                    |
| Bilateral Capacity PPA          | N/A         | 0                        | 90                      | 5                          | 1                          | 0                    |
| Renewable<br>Energy Credit      | N/A         | 3.50                     | 0                       | N/A                        | 1                          | 0                    |

Figures are initial 2023 values; PPA rate and capacity prices change through the duration of the study


> Purchase power agreement (PPA) – An agreement to purchase power from a generation owner.

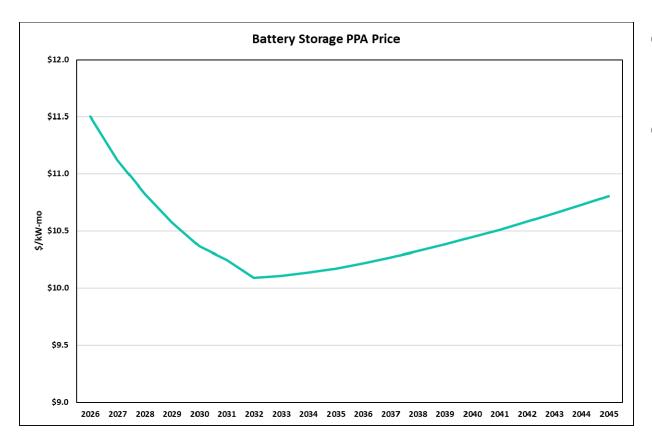
### **SOLAR PPA PRICE**




- Prices reflect year project begins operation (3-year lag from when PPA is signed)
- LevelTen Energy data
  - 33% increase in IN Hub P25 offer price from 2021 to 2022 (+26% US mkt avg)
  - 2023Q1 MISO offers reversed
     2022Q4 pause in price increase
  - 15% increase in MISO P25 offer price since 2022Q3...post IRA (+17% US mkt avg)

#### WIND PPA PRICE




- Prices reflect year project begins operation (3-year lag from when PPA is signed)
- LevelTen Energy P25 offer price data
  - 25% increase in IL Hub from 2021 to 2022 (+35% US)
  - 2023Q1 MISO offers reversed
     2022Q4 price reductions
  - 2% decline in MISO P25 offer price since 2022Q3...post IRA (+3% US)
  - Despite recent price stability, MISO
     P25 offers remain above \$45/MWh

### **RENEWABLE PPA PRICE**




- Heavy premium in solar PPA prices relative to wind through the 2020s.
- Wind and solar PPA price forecast reaches minimums from 3023-3034 in nominal dollars.
  - In real dollars, PPA prices continue to decline through the remainder of the study.
- From the mid-2030s onward, projected wind and solar PPA prices are fairly comparable.

### **BATTERY STORAGE PPA PRICE**



- Prices reflect year project begins operation (3-year lag from when PPA is signed)
- Assumed future prices are based on projected changes in capital costs (NREL, etc.)

### **BILATERAL CAPACITY PRICE**



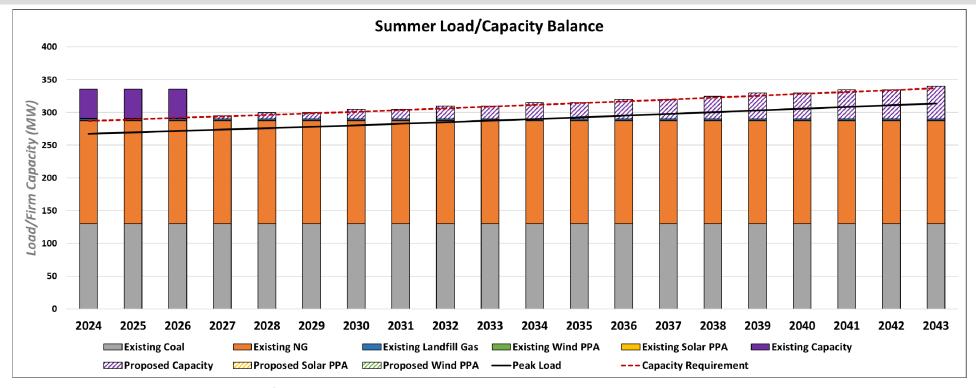
- Capacity price shown for entire planning year.
  - Assuming bilateral capacity cannot be purchased for a specific season.

## **BASE CASE RESULTS**

### **FINANCIAL METRIC DEFINITIONS**

- Two financial metrics evaluated for this study:
  - Net Present Value (\$M)
    - Cost positive
    - o Includes fixed generation costs, variable generation costs, generation revenues, and load purchase costs.
    - Discount rate is applied to determine present-day value of future cash flows in 2023 dollars.
  - Levelized Cost of Energy (\$/MWh)
    - Net Present Value divided by discounted total load volume.

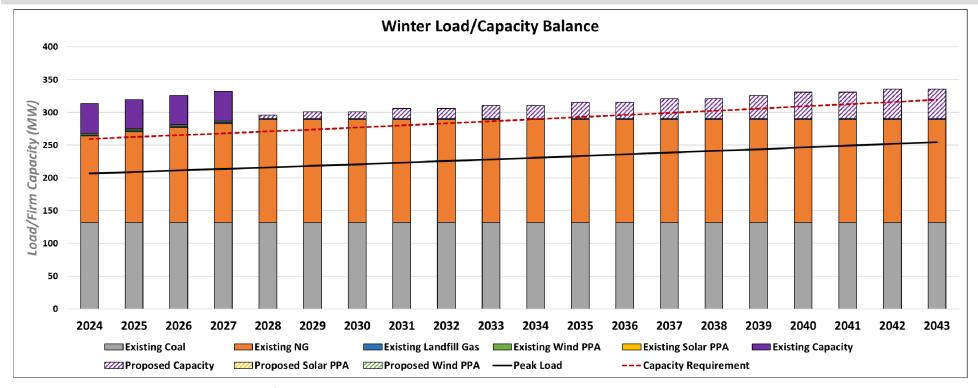
7/11/2023 \_\_\_\_\_TEA\_\_\_


## RESOURCE BUILDS/RETIREMENTS

|          |                         |    |    |    |     |    |    | So | luti | on | Cor | npa | aris | on |    |    |    |    |    |    |    |           |               |
|----------|-------------------------|----|----|----|-----|----|----|----|------|----|-----|-----|------|----|----|----|----|----|----|----|----|-----------|---------------|
| Scenario | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28 | 29 | 30 | 31   | 32 | 33  | 34  | 35   | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | NPV (\$M) | LCoE (\$/MWh) |
|          | Existing Thermal        |    |    |    |     |    |    |    |      |    |     |     |      |    |    |    |    |    |    |    |    |           |               |
|          | Solar PPA               |    |    |    |     |    |    |    |      |    |     |     |      |    |    |    |    |    |    |    |    | \$1,024   |               |
| Base     | Wind PPA                |    |    |    | -6  |    |    |    |      |    |     |     |      |    |    |    |    |    |    |    |    |           | \$60.47       |
|          | Battery Storage PPA     |    |    |    |     |    |    |    |      |    |     |     |      |    |    |    |    |    |    |    |    |           |               |
|          | Bilateral Capacity      |    |    |    | -40 | 10 | 10 | 15 | 15   | 20 | 20  | 25  | 25   | 30 | 30 | 35 | 40 | 40 | 45 | 45 | 50 |           |               |

<sup>\*</sup>Bilateral capacity purchases are for one planning year.

- Dynegy capacity contract and Bluegrass wind PPA expires at the end of May 2027.
- Increasing volumes of bilateral capacity are purchased during the late 2020s and from the mid-2030s onward to meet capacity requirements.
- No solar, wind, or battery storage PPAs were selected in the base case.
- 2024 budget assumptions for purchase power cost are \$58.69/MWh of load (\$74.4M total).


## LOAD/FIRM CAPACITY BALANCE - SUMMER



Firm capacity requirements for summer met using bilateral capacity.

7/11/2023 \_\_\_\_\_TEA\_\_\_\_

## LOAD/FIRM CAPACITY BALANCE - WINTER



- o Firm capacity requirements for winter met using bilateral capacity.
- Winter capacity not as much of a concern as summer until the mid-2030s.

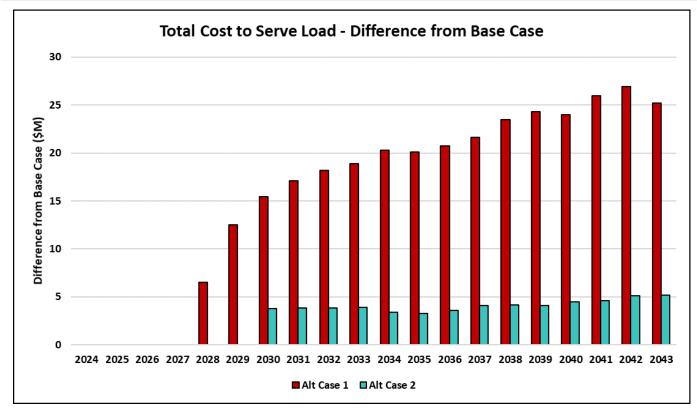
# **ALTERNATE CASE RESULTS**

### **ALTERNATE CASE 1 – 100% RENEWABLE NO RECS**

|           |                         |    |    |    |     |     |     | So  | luti | ion | Cor | npa | aris | on |    |    |    |    |    |    |      |           |               |
|-----------|-------------------------|----|----|----|-----|-----|-----|-----|------|-----|-----|-----|------|----|----|----|----|----|----|----|------|-----------|---------------|
| Scenario  | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28  | 29  | 30  | 31   | 32  | 33  | 34  | 35   | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43   | NPV (\$M) | LCoE (\$/MWh) |
|           | Existing Thermal        |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|           | Solar PPA               |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
| Base      | Wind PPA                |    |    |    | -6  |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      | \$1,024   | \$60.47       |
|           | Battery Storage PPA     |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|           | Bilateral Capacity      |    |    |    | -40 | 10  | 10  | 15  | 15   | 20  | 20  | 25  | 25   | 30 | 30 | 35 | 40 | 40 | 45 | 45 | 50   |           |               |
|           | Existing Thermal        |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
| 1000/     | Solar PPA               |    |    |    |     |     | 50  | 150 | 50   |     |     |     |      |    |    | 50 |    |    |    | 50 | 100  | 0         |               |
| 100%      | Wind PPA                |    |    |    | -6  | 150 | 100 |     |      |     |     |     |      |    |    |    |    |    |    |    | -100 | \$1,193   | \$70.46       |
| Renewable | Battery Storage PPA     |    |    |    |     |     | _   | ·   |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|           | Bilateral Capacity      |    |    |    | -40 | ·   |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |

<sup>\*</sup>Bilateral capacity purchases are for one planning year.

- Model invests heavily in wind (250 MW) and solar (250MW) PPAs during the late 2020s early 2030s to ensure 100% renewable requirements are met.
- Bilateral capacity is not needed in this scenario since capacity requirements are being met with existing resources and the renewable PPAs.
- \$169M increase in net present value when compared to the base case.


### **ALTERNATE CASE 2 – 100% RENEWABLE WITH RECS**

|             |                         |    |    |    |     |    |    | So | luti | ion | Cor | npa | aris | on |    |    |    |    |    |    |    |           |               |
|-------------|-------------------------|----|----|----|-----|----|----|----|------|-----|-----|-----|------|----|----|----|----|----|----|----|----|-----------|---------------|
| Scenario    | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28 | 29 | 30 | 31   | 32  | 33  | 34  | 35   | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | NPV (\$M) | LCoE (\$/MWh) |
|             | Existing Thermal        |    |    |    |     |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    |           |               |
|             | Solar PPA               |    |    |    |     |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    |           |               |
| Base        | Wind PPA                |    |    |    | -6  |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    | \$1,024   | \$60.47       |
|             | Battery Storage PPA     |    |    |    |     |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    |           |               |
|             | Bilateral Capacity      |    |    |    | -40 | 10 | 10 | 15 | 15   | 20  | 20  | 25  | 25   | 30 | 30 | 35 | 40 | 40 | 45 | 45 | 50 |           |               |
|             | Existing Thermal        |    |    |    |     |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    |           |               |
| 100%        | Solar PPA               |    |    |    |     |    |    |    |      |     | 100 |     |      |    |    |    |    |    |    |    |    |           |               |
| Renewable - | Wind PPA                |    |    |    | -6  | ·  |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    | \$1,054   | \$62.22       |
| With RECs   | Battery Storage PPA     |    |    |    |     |    |    |    |      |     |     |     |      |    |    |    |    |    |    |    |    |           |               |
|             | Bilateral Capacity      |    |    |    | -40 | 10 | 10 | 15 | 15   | 20  |     | 5   | 5    | 10 | 15 | 15 | 20 | 25 | 25 | 30 | 30 |           |               |

<sup>\*</sup>Bilateral capacity purchases are for one planning year.

- Model invests in solar PPAs during early 2033 to help meet the 100% renewable requirement along with summer capacity needs.
- Bilateral capacity is added intermittently.
- \$30M increase in net present value when compared to the base case.

### **COST DIFFERENCE – ALT CASES 1-2**



- Substantial cost increases in alternate case 1 due to lower revenues from solar PPAs.
  - Power price congestion assumed to increase over time as more solar/wind is added onto MISO's system.
- REC price is constant through forecast duration, making alt case 2 cost increase relatively flat over time.

7/11/2023 \_\_\_\_\_TEA\_\_\_\_

### **ALTERNATE CASE 3 – 100% RENEWABLE DIVEST COAL**

|                    |                         |    |    |    |     |     |     | So   | luti | on | Cor | npa | ris | on |    |    |    |    |    |     |      |           |               |
|--------------------|-------------------------|----|----|----|-----|-----|-----|------|------|----|-----|-----|-----|----|----|----|----|----|----|-----|------|-----------|---------------|
| Scenario           | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28  | 29  | 30   | 31   | 32 | 33  | 34  | 35  | 36 | 37 | 38 | 39 | 40 | 41 | 42  | 43   | NPV (\$M) | LCoE (\$/MWh) |
|                    | Existing Thermal        |    |    |    |     |     |     |      |      |    |     |     |     |    |    |    |    |    |    |     |      |           |               |
|                    | Solar PPA               |    |    |    |     |     |     |      |      |    |     |     |     |    |    |    |    |    |    |     |      |           |               |
| Base               | Wind PPA                |    |    |    | -6  |     |     |      |      |    |     |     |     |    |    |    |    |    |    |     |      | \$1,024   | \$60.47       |
|                    | Battery Storage PPA     |    |    |    |     |     |     |      |      |    |     |     |     |    |    |    |    |    |    |     |      |           |               |
|                    | Bilateral Capacity      |    |    |    | -40 | 10  | 10  | 15   | 15   | 20 | 20  | 25  | 25  | 30 | 30 | 35 | 40 | 40 | 45 | 45  | 50   |           |               |
|                    | Existing Thermal        |    |    |    |     |     |     | -137 |      |    |     |     |     |    |    |    |    |    |    |     |      |           |               |
| 100%               | Solar PPA               |    |    |    |     |     | 50  | 150  | 50   |    | 50  | -   |     |    |    |    |    |    |    | 100 | 150  |           |               |
| Renewable -        | Wind PPA                |    |    |    | -6  | 150 | 100 | _    |      |    |     |     |     |    |    |    |    |    |    |     | -150 | \$1,637   | \$96.69       |
| <b>Divest Coal</b> | Battery Storage PPA     |    |    |    |     |     |     |      |      |    |     | _   |     |    |    |    |    |    |    |     |      |           |               |
|                    | Bilateral Capacity      |    |    |    | -40 | 10  | 25  | 50   | 45   | 50 | 45  | 45  | 50  | 60 | 65 | 70 | 70 | 75 | 80 | 70  | 65   |           |               |

<sup>\*</sup>Bilateral capacity purchases are for one planning year.

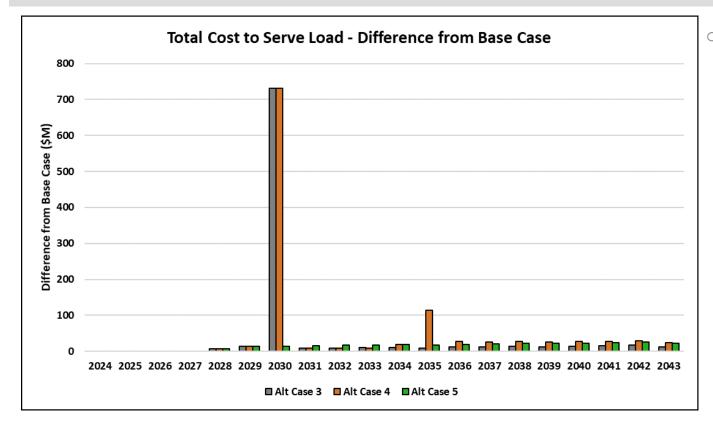
- Model invests heavily in wind (250 MW) and solar (250MW) PPAs during the late 2020s early 2030s to ensure 100% renewable requirements are met.
  - Additional bilateral capacity needed to ensure CMWL is meeting capacity requirements.
- \$613M increase in net present value when compared to the base case.
  - Heavily impacted by \$726M assumed cost of divestiture for latan and Prairie State contracts in 2030.

### ALTERNATE CASE 4 - 100% RENEWABLE DIVEST COAL AND NATURAL GAS

|                              |                         |    |    |    |     |     |     | So   | luti | on | Cor | npa | ris  | on  |     |     |     |     |     |     |      |           |               |
|------------------------------|-------------------------|----|----|----|-----|-----|-----|------|------|----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|-----------|---------------|
| Scenario                     | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28  | 29  | 30   | 31   | 32 | 33  | 34  | 35   | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43   | NPV (\$M) | LCoE (\$/MWh) |
|                              | Existing Thermal        |    |    |    |     |     |     |      |      |    |     |     |      |     |     |     |     |     |     |     |      |           |               |
|                              | Solar PPA               |    |    |    |     |     |     |      |      |    |     |     |      |     |     |     |     |     |     |     |      |           |               |
| Base                         | Wind PPA                |    |    |    | -6  |     |     |      |      |    |     |     |      |     |     |     |     |     |     |     |      | \$1,024   | \$60.47       |
|                              | Battery Storage PPA     |    |    |    |     |     |     |      |      |    |     |     |      |     |     |     |     |     |     |     |      |           |               |
|                              | Bilateral Capacity      |    |    |    | -40 | 10  | 10  | 15   | 15   | 20 | 20  | 25  | 25   | 30  | 30  | 35  | 40  | 40  | 45  | 45  | 50   |           |               |
| 100%                         | Existing Thermal        |    |    |    |     |     |     | -137 |      |    |     |     | -191 |     |     |     |     |     |     |     |      |           |               |
| Renewable -                  | Solar PPA               |    |    |    |     |     | 50  | 150  | 50   |    |     |     | 50   |     |     |     |     |     |     | 100 | 150  |           |               |
|                              | Wind PPA                |    |    |    | -6  | 150 | 100 |      |      |    |     |     |      |     |     |     |     |     |     |     | -150 | \$1,747   | \$103.15      |
| Divest Coal &<br>Natural Gas | Battery Storage PPA     |    |    |    |     |     |     |      |      |    |     |     |      |     |     |     |     |     |     |     |      |           |               |
| ivaturai Gas                 | Bilateral Capacity      |    |    |    | -40 | 10  | 25  | 50   | 45   | 50 | 55  | 195 | 210  | 220 | 220 | 225 | 230 | 235 | 235 | 225 | 220  |           |               |

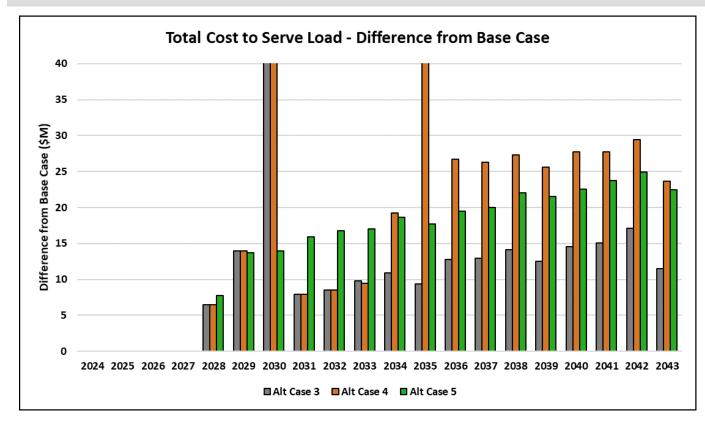
<sup>\*</sup>Bilateral capacity purchases are for one planning year.

- Model invests heavily in wind (250 MW) and solar (250MW) PPAs during the late 2020s early 2030s to ensure 100% renewable requirements are met.
  - Additional bilateral capacity needed to ensure CMWL is meeting capacity requirements.
- \$723M increase in net present value when compared to the base case.
  - Heavily impacted by \$726M assumed cost of divestiture for latan and Prairie State contracts in 2030 and \$90M transmission upgrade cost needed to retire local gas units.


### **ALTERNATE CASE 5 – 100% RENEWABLE RETIRE SIKESTON EARLY**

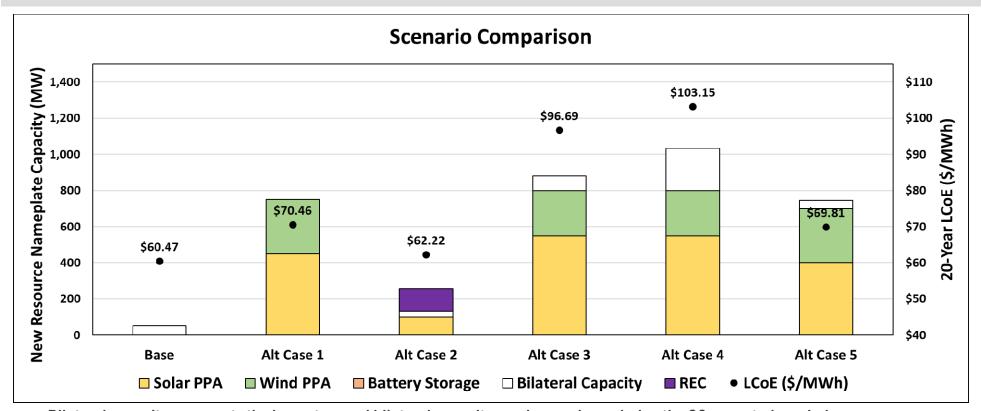
|                 |                         |    |    |    |     |     |     | So  | luti | ion | Cor | npa | aris | on |    |    |    |    |    |    |      |           |               |
|-----------------|-------------------------|----|----|----|-----|-----|-----|-----|------|-----|-----|-----|------|----|----|----|----|----|----|----|------|-----------|---------------|
| Scenario        | Nameplate Capacity (MW) | 24 | 25 | 26 | 27  | 28  | 29  | 30  | 31   | 32  | 33  | 34  | 35   | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43   | NPV (\$M) | LCoE (\$/MWh) |
|                 | Existing Thermal        |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|                 | Solar PPA               |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
| Base            | Wind PPA                |    |    |    | -6  |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      | \$1,024   | \$60.47       |
|                 | Battery Storage PPA     |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|                 | Bilateral Capacity      |    |    |    | -40 | 10  | 10  | 15  | 15   | 20  | 20  | 25  | 25   | 30 | 30 | 35 | 40 | 40 | 45 | 45 | 50   |           |               |
| 100%            | Existing Thermal        |    |    |    |     | -66 |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
|                 | Solar PPA               |    |    |    |     |     | 50  | 150 | 50   |     |     |     |      |    |    | 50 |    |    |    | 50 | 50   |           |               |
| Renewable -     | Wind PPA                |    |    |    | -6  | 150 | 100 |     |      |     |     |     |      |    |    |    |    |    |    |    | -100 | \$1,181   | \$69.81       |
| Retire Sikeston | Battery Storage PPA     |    |    |    |     |     |     |     |      |     |     |     |      |    |    |    |    |    |    |    |      |           |               |
| in 2028         | Bilateral Capacity      |    |    |    | -40 | 45  | 15  |     |      |     |     |     |      | 5  | 5  | 5  | 5  | 10 | 15 | 15 | 5    |           |               |

<sup>\*</sup>Bilateral capacity purchases are for one planning year.


- Model invests heavily in wind (250 MW) and solar (250MW) PPAs during the late 2020s early 2030s to ensure 100% renewable requirements are met.
  - Additional bilateral capacity needed to ensure CMWL is meeting capacity requirements.
- **Solution** \$157M increase in net present value when compared to the base case.

### **COST DIFFERENCE – ALT CASES 3-5**




 High cost increases during 2030 and 2035 in scenarios involving coal contract divestiture and natural gas unit retirements.

### **COST DIFFERENCE – ALT CASES 3-5**



- High cost increases during 2030 and 2035 in scenarios involving coal contract divestiture and natural gas unit retirements.
- Outside of 2030, alt case 5 has higher annual costs than alt case 3.
  - Coal resources have higher costs than revenues, particularly in the later years.
  - cMWL has a substantial amount of excess firm capacity in alt case 5.

### **SCENARIO COMPARISON**



- Bilateral capacity represents the largest annual bilateral capacity purchase volume during the 20-year study period.
- o REC volume shown represents the maximum annual purchase volume divided by the number of hours in a year.

#### **MAIN TAKEAWAYS**

- Largest financial impact to Columbia in achieving 100% renewable is if existing thermal resources are retired early.
  - Additional risks present if thermal resource retirements are not approved by MISO.
- Retirement of existing thermal resources results in substantial bilateral capacity purchases.
  - Renewables receive low firm capacity relative to thermal resources.
- There is value in setting incremental renewable goals rather than a single goal at a specified year.
  - o Renewable PPA prices are changing over time, this presents a risk when investing in a large volume of PPAs in just one year.
- Additional risks associated with loss of local generation in extreme weather events were not evaluated in this study.
  - Congestion rights costs and ancillary services not considered in this study.
- Assumed transmission upgrades in alternate case 4 to be complete by 2035 is improbable.