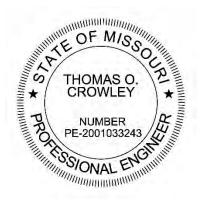


City of Columbia, Missouri Water and Light Department McBaine Water Treatment Plant

2017-2018 Drinking Water Planning Work Group Recommendations Update to 2011 Preliminary Design Report

FINAL | March 2018



City of Columbia, Missouri Water and Light Department McBaine Water Treatment Plant

2017-2018 Drinking Water Planning Work Group Recommendations Update to 2011 Preliminary Design Report

FINAL | March 2018

Contents

Executive Summary	1
Goals	1
Mission of Drinking Water Planning Workgroup	1
Methodology	1
Cost Development	2
Final Recommendations	3
Section 1: Introduction	1
1.1 Background	1
1.1.1 2012 McBaine Water Treatment Plant (WTP) Expansion Preliminary Design Report	1
1.1.2 2016 Condition Assessment Report	1
1.1.3 2017 Integrated Water Resource Plan	2
1.2 Scope	3
Section 2: Project Visioning	5
2.1 Purpose	5
2.2 Meetings and Workshops	5
2.3 Mission and Goals Statement	5
2.4 Visioning Questionnaire and Results	6
2.5 Establishing Project Boundaries	6
2.6 Regulatory Review and Water Quality Goals	8
2.7 Treatment Concept Development	10
2.8 Treatment Train Identification and Fatal Flaw Analysis	11
2.8.1 Treatment Technology Identification	11
2.8.2 Fatal Flaw Analysis	13
Section 3: Alternative Evaluation	19
3.1 Purpose	19
3.2 Meetings and Workshops	19
3.3 Establish Viable Set of Treatment (Base and Supplemental) Alternatives	19
3.3.1 Establish Potential Combination of Base and Supplemental Alternatives to Achieve Treatment Goals	19
3.3.2 Screen Base Alternatives	20

3.3.3 Screen Supplemental Alternatives	21
3.4 Evaluation Criteria	23
3.4.1 Structured Decision Analysis	23
3.4.2 Criteria Selection and Ranking	25
3.4.3 Establish Criteria Scores:	26
3.4.4 Further Screening Utilizing CDP Software – Base Alternatives	30
3.5 Ranking of Preliminary Alternatives	32
Section 4: Final Ranking And Recommendations	35
4.1 Purpose	35
4.2 Meetings and Workshops	35
4.3 Data Gap Analysis	35
4.4 Level 4 Cost Estimates	35
4.5 Summary of Shortlisted Alternatives	36
4.5.1 Alternative B1.1 - Expand Existing Plant (Rerate Existing Filters)	36
4.5.2 Alternative B1.1, S2.1 - Expand Existing Plant (Rerate Existing Filters) and Add Post Filter GAC Contactors	41
4.5.3 Alternative B1.2, S1.1 - Expand Existing Plant (New Filter Train)	45
4.5.4 Alternative B1.2, S1.1, S2.1 - Expand Existing Plant (New Filter Train) and Add Post Filter GAC Contactors	49
4.5.5 Alternative B2, S1.1, S2.1, S3.2 - Expand Existing Plant (New Treatment Train), Post Treatment Ozone/Biofiltration, and Post Filter GAC Contactors	53
4.6 Final Rankings	57
4.7 Recommendations of Drinking Water Planning Work Group	59
Appendices	
Appendix A - DWPWG Ordinance	
Appendix B – Kickoff Workshop	

- $\label{eq:constraint} \mbox{Appendix}\ \mbox{C} \mbox{Summary of Visioning Questionnaire and Results}$
- Appendix D Summary of Visioning Workshops
- Appendix E Summary of Structured Decision Analysis Workshops
- Appendix F DWPWG Recommendations

Tables

Table ES-1	AACE Cost Classification System	2
Table 1	DWPWG – Summary of Tiered Finished Water Quality Goals	8
Table 2	Summary of Must Haves and May Haves for Treatment Plant Expansion Alternatives	10
Table 3	Summary of Fatal Flaws	14
Table 4	Summary of Preliminary Alternatives	20
Table 5	AACE Cost Classification System	21
Table 6	Summary of Remaining Viable Alternatives Following Initial Screening Using AACE Level 5 Cost Estimates	22
Table 7	Summary of Primary and Sub-Criteria Ranking	26
Table 8	Evaluation Sub-Criterion for McBaine WTP Expansion	27
Table 9	Summary of Remaining Viable Alternatives Following Final Screening Using CDP Model	31

Figures

Figure ES-1	Structured Decision Analysis Benefits	1
Figure 1	Average Daily and Maximum Daily Demand Forecasts from the Integrated Water Resource Plan (Black & Veatch, 2017)	3
Figure 2	WTP Expansion Recommendations of IWRP	6
Figure 3	Summary of Capacity Restoration Project as Recommended by 2017 Condition Assessment Report Well Field, McBaine Water Treatment Plant, and West Ash Booster Pump Station	7
Figure 4	Summary of Treatment Train Alternative Development	11
Figure 5	Potential Treatment Technologies Identified for Fatal Flaw Analysis	13
Figure 6	Fatal Flaw Analysis – Hardness Removal Technologies	15
Figure 7	Fatal Flaw Analysis – Filtration Technologies	16
Figure 8	Fatal Flaw Analysis – CEC Removal/Oxidation Technologies	17
Figure 9	Fatal Flaw Analysis – DBP/DBP precursor Removal Technologies	18
Figure 10	Alternative Weighted Scoring Process	24
Figure 11	Sensitivity Analysis Example	24
Figure 12	Summary of Pairwise Comparison from DWPWG Worksheets	25
Figure 13	Summary of Base Alternative Evaluation – CDP Analysis	30
Figure 14	Summary of Preliminary Alternatives	32

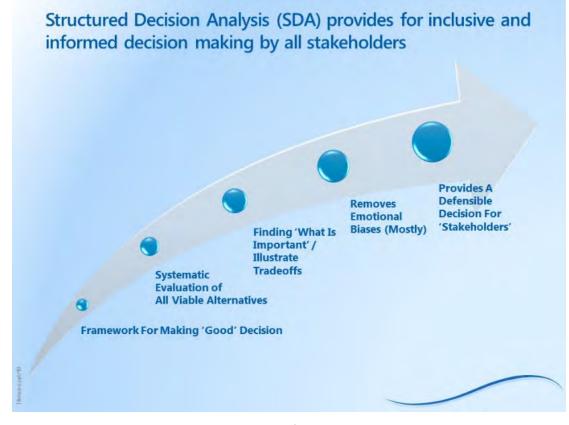
Figure 15	Results of Preliminary Alternatives Screening	33
Figure 16	Total Scores and Benefit/Cost Ratios	34
Figure 17	Level 4 Cost Estimates for Final Alternatives Ranking	36
Figure 18	Alternative B1.1 Layout	39
Figure 19	Alternative B1.1 Process Flow Schematic	41
Figure 20	Alternative B1.1, S2.1 Layout	43
Figure 21	Alternative B1.1, S2.1 Process Flow Schematic	45
Figure 22	Alternative B1.2, S1.1 Layout	47
Figure 23	Alternative B1.2, S1.1 Process Flow Schematic	49
Figure 24	Alternative B1.2, S1.1, S2.1 Layout	51
Figure 25	Alternative B1.2, S1.1, S2.1 Process Flow Schematic	53
Figure 26	Alternative B2, S1.1, S2.1, S3.2 Layout	55
Figure 27	Alternative B2, S1.1, S2.1, S3.2 Process Flow Schematic Part I	57
Figure 28	Alternative B2, S1.1, S2.1, S3.2 Process Flow Schematic Part II	57
Figure 29	Final Ranking of Shortlisted Alternatives	58
Figure 30	Benefit/Cost Ratios for Shortlisted Alternatives	58
Figure 31	Recommended Alternatives Scores vs. Life Cycle Cost	59

Abbreviations

AACE	American Association of Cost Estimators
CaCO ₃	calcium carbonate
Carollo	Carollo Engineers, Inc.
CDP	Criterium Decision Plus
CEC	Contaminants of Emerging Concern
City	City of Columbia
DBP	Disinfection By-Product
D/DBPR	Disinfectants/Disinfection By-Products Rule
DWPWG	Drinking Water Planning Work Group
ft	feet
GAC	Granular Activated Carbon
gpm/sf	gallons per minute per square foot
GWUDI	groundwater under the direct influence
IDSE	Initial Distribution System Evaluation
IWRP	Integrated Water Resource Plan
LRWSS	Long Range Water System Study (Jacobs, 2015)
μg/L	micrograms per liter
MG	million gallons
μg/L	micrograms per liter
mg/L	milligrams per liter
mgd	million gallons per day
MIEX	Magnetic Ion Exchange
NTU	nephelometric turbidity unit
PDR	2012 Preliminary Design Report for the McBaine WTP
ppd	pounds per day
RO	reverse osmosis
SDA	Structured Decision Analysis
S.U.	Standard Units
ТТНМ	Total Trihalomethane
UF	Ultrafiltration
UV	ultraviolet
WTP	water treatment plant

EXECUTIVE SUMMARY

Goals


The main goal of this project is to update the recommendations of the 2012 Preliminary Design Report (PDR) for the McBaine WTP. This update is based on the conclusions and recommendations of the 2016 Condition Assessment Report and the updated demand projections from the 2017 Integrated Water Resources Plan (IWRP).

Mission of Drinking Water Planning Workgroup

Provide planning recommendations to the Water and Light Advisory Board and the City Council regarding the expansion of the water treatment system by establishing water quality goals, determining assessment criteria; and, conducting a thorough, objective, assessment of industry accepted treatment technologies to determine the process or processes that best meet these criteria.

Methodology

Similar to the 2012 PDR, the Drinking Water Planning Workgroup (DWPWG) utilized a series or workshops, facilitated by Carollo Engineers, Inc., (Carollo), in which a structured decision analysis (See Figure ES-1) was employed to provide these planning recommendations. A total of eight (8) workshops were held between May 2017 and February 26, 2018.

Figure ES-1 Structured Decision Analysis Benefits

The major steps associated with the structured decision analysis are as follows:

- Project Visioning: A process in which the framework and boundaries for the decision are established. A fatal flaw list is developed.
- Alternatives Identification and Screening: A process in which potential alternatives are identified and screened. Any alternatives with fatal flaws are eliminated from further consideration.
- Criteria Selection and Ranking: A process in which the criteria upon which particular alternatives associated with the decision process are to be evaluated and the relative importance of these criteria to the decision are established through a "pairwise" comparison.
- Alternative Development and Shortlist: A process in which potential alternatives are sufficiently developed to eliminate those that provide the lowest benefit (non-economic scores): i Cost (Economic scores) ratio when examined with the weighted criteria.
- Alternative Re-Ranking and Sensitivity Analysis: A process in which data gaps identified as relevant to the decision process are identified and resolved; the alternatives reranked with respect to the evaluation criteria; a sensitivity analysis conducted to determine the robustness of a potential decision; and a final decision statement and recommendation statement is generated.

Cost Development

Table 5 presents the cost classification system as applied in Engineering, Procurement, and construction for the Process Industries as developed by the American Association of Cost Estimators (AACE). It is important to note that the level of estimates (Class 4) provided in the alternatives development and selection process are utilized to provide a relative comparison between alternatives and **should not be utilized for budgetary purposes**.

Estimate Class	Primary Characteristic	Secondary Characteristic			
	Maturity Level of Project Definition Deliverables (as % of definition)	End Usage – Typical Purpose of Estimate	Methodology – Typical Estimating Method	Expected Range of Accuracy Typical variation in low to high	
Class 5	0% to 2%	Concept Screening	Capacity factored Parametric models Judgement or analogy	L: -20% to +50% H: +30% to +100%	
Class 4	1% to 15%	Study or Feasibility	Equipment factored Parametric models	L: -15% to +30% H: +20% to +50%	
Class 3	10% to 40%	Budget Authorization or Control	Semi-detailed unit costs with assembly level line items	L: -10% to -20% H: +10% to +30%	
Class 2	30% to 70%	Control or bid/tender	Detailed unit costs with forced detail take-off	L: -5% to -15% H: +5% to +20%	
Class 1	65% to 100%	Check estimate or bid/tender	Detailed unit costs with detailed take-off	L: -3% to -10% H: +3% to +15%	
Notes: (1) Taken from 18R-97 Cost Estimate Classification System Published by AACE.					

Table ES-1 AACE Cost Classification System

Final Recommendations

The findings and recommendations of the DWPWG are as follows:

- 1. DWPWG Findings:
 - a. The McBaine WTP should consider processes that meet the requirements for a GWUDI Facility.
 - b. The McBaine WTP should utilize treatment technologies to achieve Disinfection By Products (DBP) compliance without the need for chloramines and to also assist in removal of Contaminants of Emerging Concern (CEC's).
- 2. DWPWG Recommendations:
 - a. Priority should be given to first restoring the plant to its 32 MGD capacity prior to increasing capacity to 48 MGD.
 - b. The base alternatives of B1.1, B1.2, and B2 should be evaluated with the supplemental processes to achieve improved water quality through a phased approach.
 - c. The design on the selected alternative should begin no later than 2020, as indicated in Carollo's analysis, to be in operation no later than 2024, unless design and construction are able to be accomplished sooner.
 - d. In order to improve water quality while the new process train is in design, and construction, repair and/or enhancement of the current filters and pilot testing done to make every effort to return to free chlorine disinfection.
 - e. The rehabilitation and/or enhancement initiatives outlined in the Condition Assessment will address deficiencies in the facility and system and request an updated timeline for these initiatives be produced by Water and Light.

Section 1 INTRODUCTION

1.1 Background

The City of Columbia (City) owns and operates a municipal water treatment utility that supplies water to domestic, commercial, institutional, and industrial customers in and around the City. The water supply and treatment system consists of a 15 well ground water well field, one water treatment plant rated for 24 million gallons per day (mgd) capacity, a transmission network, and several water storage tanks/reservoirs. Originally constructed in 1970, the facility has gone through a number of upgrades and expansions with the latest occurring in 2008.

1.1.1 2012 McBaine Water Treatment Plant (WTP) Expansion Preliminary Design Report

Following the last plant expansion, the City completed the *McBaine WTP Expansion Preliminary Design Report (Carollo, 2012)*. The purpose of this report was to provide recommendations to expand the existing facilities in order to meet future demands and achieve compliance with current and anticipated future regulatory requirements. The decision making process that was established considered three (3) primary criteria, thirteen (13) sub-criteria, and incorporated relative cost comparisons.

The recommended treatment alternative from this report involved rehabilitation of the existing filters to increase filtration rate to 6 gallons per minute per square foot (gpm/sf) along with installation of high rate deep bed rapid rate multimedia filters as part of any filtration expansion. This recommendation resulted in a treatment alternative that not only met future demands, but also provided a facility that was groundwater under direct influence compliant. It should be noted that treatment alternatives that provided removal of contaminants of emerging concern (CECs) were also evaluated. Although these higher cost alternatives resulted in a lower benefit/cost ratio, the decision to implement these is a matter of public policy rather than determination through any engineering evaluation.

1.1.2 2016 Condition Assessment Report

In 2016, the City worked with Black & Veatch to complete a condition assessment of the McBaine WTP, as well as the Well Field and West Ash Booster Pump Station. The goal of the condition assessment was to assess the condition of the existing equipment to determine which components need to be replaced to meet current critical demands and water quality, identify potential improvements that will enhance performance and reliability, and address future capacity increases.

Because the ultimate capacity of the plant was uncertain at the time of the condition assessment, the report that was developed evaluated alternatives for expanding the plant to 45 or 60 mgd. In addition, the associated impact if the groundwater is reclassified as groundwater under the direct influence (GWUDI) was also considered in some of the alternatives. All in all, three (3) 45 mgd alternatives were considered, three (3) 60 mgd alternatives were considered, and two (2) of the 60 mgd alternatives were evaluated considering the impact of GWUDI.

Selection of the recommended alternatives was based on a number of factors, including capital costs, operation costs, constructability, regulatory, and operational. Based on this evaluation, the initial expansion alternative (45 mgd expansion) that was recommended in the Condition Assessment Report was construction of a new process train. This alternative consists of building an additional treatment train on the north side of the plant that includes two new aerators, one solids contact unit, one recarbonation basin, and a new filter complex. Although the costs associated with this alternative were higher than re-rating the existing plant, it was selected due to its ease of constructability and regulatory approval.

Another notable result of the condition assessment that should be mentioned here was the derating of plant capacity. As previously mentioned, the last plant expansion occurred in 2008 and included, among other things, a fourth Primary Basin and a fourth Secondary Basin. The four sets of basins each provided a capacity of 8 mgd, for a total plant capacity of 32 mgd. Because of the age and condition of the equipment in Primary Basins No. 1 and 2, these basins were derated to 4 mgd each, resulting in a total plant capacity of 24 mgd. It should be noted that the replacement of equipment in Primary Basins No. 1 and 2 should occur regardless of any expansion alternative recommended in this report.

1.1.3 2017 Integrated Water Resource Plan

In 2017, the City completed their Integrated *Water Resource Plan (Black & Veatch, 2017)*. This report focused on a number of issues associated with managing water resources and included the following:

- The City's current water source and supply capacity.
- Projected population growth and water needs.
- Potential future sources of water.
- Development of water alternatives considering:
 - Water Demand Trends.
 - Water Conservation.
 - Potable Water Supply.
 - Non-Potable Water Supply.
 - Regulatory Requirements.
 - Community Involvement.

There were multiple notable recommendations from the Integrated Water Resource Plan (IWRP) that directly affect the development of recommendations in this report. The IWRP established specific demand projections by user class, which included residential, commercial, large commercial, and irrigation users to better understand the impact if alternative water supply or conservation measures were implemented. This evaluation included a review of known historical data along with expected growths typical of this type of community to establish supply requirements to year 2040. The demand projections derived from the evaluation were also compared to previous projections from the *Long Range Water System Study (LRWSS) (Jacobs, 2015)* and are presented in Figure 1.

In addition to the updated demand projections, the IWRP also evaluated current and potential future water supply sources. The alternatives that were evaluated included the continued use of the McBaine Bottoms Aquifer using vertical wells, installation of horizontal collector wells along the Missouri River bank, and the potential use of the Missouri River as a supply source. The evaluation did not include potable water supplies beyond the general area of the plant due to the requirement for a new treatment facility and additional transmission piping. A conceptual model indicated that the aquifer could yield a total of 65 mgd with 32 wells for 30 days with groundwater levels at each well approaching, but not dropping below the tops of the well screens. In summary, the evaluation concluded that the McBaine Bottoms Aquifer could produce the desired demands for the planning period.

1.2 Scope

The main goal of this project is to update the recommendations of the 2012 Preliminary Design Report (PDR) for the McBaine WTP. This update is based on the conclusions and recommendations of the 2016 Condition Assessment and the updated demand projections from the 2017 IWRP.

In order to facilitate the process of updating the Water Treatment Plant Expansion PDR, the City Council established the Drinking Water Planning Work Group (DWPWG). The group consists of seven (7) voting members and three (3) non-voting members. The voting members include one (1) member from the City Council and six (6) members appointed by City Utilities from several drinking water customer user groups. The resolution signed by the Mayor is provided in Appendix A.

A series of workshops were conducted that included direct input and participation from the DWPWG. These workshops utilized a decision analysis model to identify and screen potential alternatives and ultimately come up with a recommendation. By using the decision analysis model, the team was able to provide a defensible decision for stakeholders by providing a systematic approach for evaluation of all viable alternatives.

Project visioning was utilized to review existing information, discuss the results of previous studies, and discuss potential boundaries for the project. Input was solicited from the DWPWG to establish a set of water quality goals as well as any additional goals for the project. These goals were then used to develop a set of viable base and supplemental alternatives for the project. Following project visioning, a potential set of viable base and supplemental alternatives were developed.

Similar to what was done in the 2012 PDR, the decision making process considered several primary criteria along with sub-criteria. The primary criteria that were agreed upon included constructability, water quality, operability, project cost, and GWUDI facility. Each of the primary criteria and sub-criteria were assigned weighted values based on input from the DWPWG. Using computer based software, the viable alternatives were then scored against the criteria, and a preliminary ranking of alternatives was developed. The rankings were reviewed with the DWPWG and a shortlisted set of alternatives was created.

To further refine the alternatives, data gaps were identified, layouts were created, and costs were refined. The shortlisted alternatives were then re-ranked and a sensitivity analysis was conducted on the results. Using these results, along with input from the DWPWG, a final recommendation was developed.

Section 2 PROJECT VISIONING

2.1 Purpose

The purpose of the project visioning phase of the project was to establish the boundaries or framework for the decision. This included the following:

- Establish/refine the mission statement and goals for the project.
- Development of questionnaire to assess preferences of DWPWG.
- Determine the water quality goals for the treatment plant effluent.

2.2 Meetings and Workshops

The following public meetings were held during the project visioning phase of the project:

- Visioning Workshop I July 10, 2017.
- Visioning Workshop II August 14, 2017.
- Water Quality Goals Workshop September 11, 2017.

2.3 Mission and Goals Statement

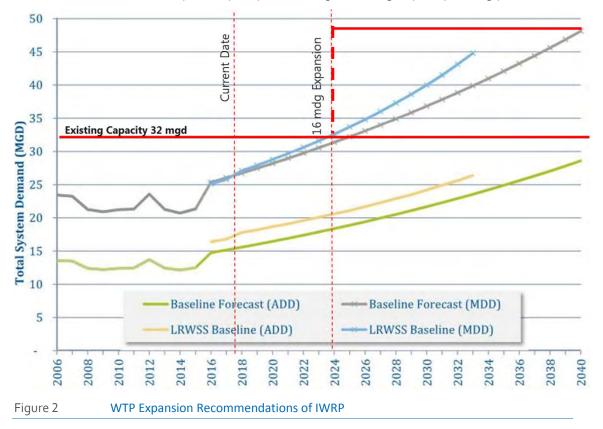
The DWPWG met over the three visioning meetings and developed the following mission statement:

"Provide planning recommendations to the Water and Light Advisory Board and the City Council regarding the expansion of the water treatment system by establishing water quality goals, determining assessment criteria; and, conducting a thorough, objective, assessment of industry accepted treatment technologies to determine the process or processes that best meet these criteria."

The **Goals** of the DWPWG are as follows:

- Review current planning strategies for water supply and verify current goals and planning horizon for water treatment capacity expansion.
- Considering current regulations, potential future regulations, and potential enhancements; review and recommend potential long term water quality goals.
- Assess the state of the industry and shortlist potential treatment strategies that meet or exceed some or all of the potential long term water quality goals based upon industry acceptance and long term (present worth) costs.
- Formulate a set of criteria upon which potential treatment strategies to meet or exceed potential goals will be evaluated.
- Objectively evaluate and rank potential treatment strategies that meet planning horizon goals using a structured decision analysis model.
- Conduct a sensitivity analysis of decisions to review robustness and defensibility of decisions to potential changes in criterion assessments.

• Through this objective process, develop planning recommendations to guide the Water and Light Advisory Board and City Council regarding the water treatment system.


2.4 Visioning Questionnaire and Results

Appendix C presents the questionnaire and a summary of the results. The questionnaire was issued as a vehicle to allow the group to provide feedback on the development of the direction for the planning group.

2.5 Establishing Project Boundaries

The following boundaries were established by the DWPWG for the investigations:

- 1. Retain/Expand Current Well Field per IWRP: The DWPWG accepts all of the recommendations of the IWRP. This includes retaining the existing groundwater wells and well field as the water supply source for the Citizens of Columbia.
- 2. Retain Existing WTP infrastructure: The existing plant infrastructure and plant site will be retained. As a result, the investigations into the treatment strategies to be employed will be limited to expansion and integration of processes at the existing WTP site.
- 3. Water Treatment Expansion Needs/Timeline: Figure 2 presents a summary of the projected demands and the WTP expansion capacity and timeline recommended by the IWRP reviewed and accepted by the DWPWG. The IWRP recommended an expansion of the water treatment plant capacity from 32 mgd to 48 mgd by the planning year 2024.

- 4. Accept WTP Capacity Restoration Project: Figure 3 presents a summary of the recommendations of the 2017 Condition Assessment Report Well Field, McBaine Water Treatment Plant, and West Ash Booster Pump Station. The findings and recommendations of these report to conduct a project to restore the capacity of the existing plant 32 mgd from its current derated capacity of 24 mgd in 2018-2019.
- 5. Softening: Following an examination of the benefits and drawbacks of the softening process in water treatment, the DWPWG concluded that softening would be continued with the targeted plant expansion project.

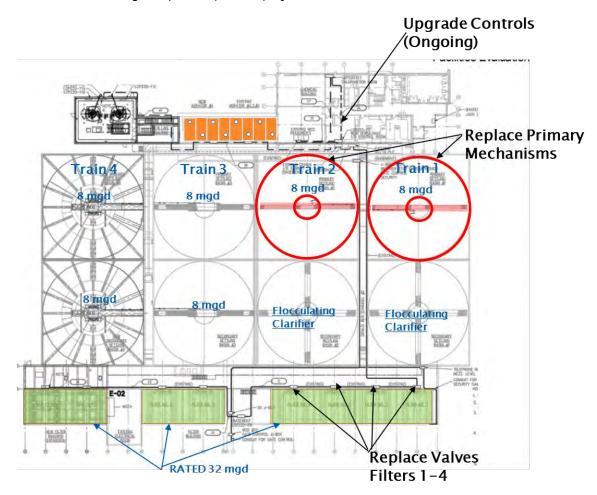


Figure 3Summary of Capacity Restoration Project as Recommended by 2017 ConditionAssessment Report Well Field, McBaine Water Treatment Plant, and West Ash Booster Pump Station

2.6 Regulatory Review and Water Quality Goals

The visioning process included an assessment of the current and anticipated future drinking water regulations. A differentiation was made between the primary drinking water regulations which establish strict compliance levels for certain health related parameters and secondary standards which provide treatment goals for mainly Aesthetic reasons (i.e. taste and odor, salinity, manganese, etc.). From this discussion a tiered water quality goal sheet presented in Table 1 was compiled that provided the following tiered levels of water quality goals:

Groundwater Only: The first tier of water quality goals were related to the current primary and secondary standards achieved by the existing WTP facility.

Groundwater Under the Direct Influence: The next tier of water quality goals were related to achieving compliance with a facility supply source classified by the state as a Groundwater Under the Direct Influence of a Surface Water (GWUDI).

Enhanced WQ Goal: The final tier of water quality goals were related to achieve additional level of treatment not required by the regulations but included levels of treatment to achieve specific water quality goals based upon the results of the survey. This final tier specifically includes the best available technologies to maximize removal of CEC and additional treatment requirements to maintain a free chlorine residual within the distribution system while maintaining water quality goals for disinfection by-products.

Teir 1 Goal Tier 2 Goal Tier 3 Goal Regulation Groundwat Groundwat Enhanced WQ	Regula	Regulatory Limit			
Regulation	er Only	GWUDI Facility	Goal	GW	GWUDI
Microbial Remov	/al/Inactivation	Performance			
Filter Effluent Turbidity	≤1 NTU of 95% of CFE ≤5 NTU of CFE	≤ 0.3 NTU for 95% of individual Filter Readings ≤ 1.0 NTU in 100% of individual Filter Readings	≤ 0.1 NTU for 95% of individual Filter Readings ≤ 0.3 NTU in 100% of individual Filter Readings	<u>None</u>	≤ 0.3 NTU for 95% of individual Filter Readings ≤ 1.0 NTU in 100% of individual Filter Readings
<i>Giardia</i> Inactivation	<u>None</u>	≥2.5 log removal through filters ≥0.5 log inactivation through Disinfection ≥3.0 total	<u>None</u>	<u>None</u>	3-log removal/ inactivation

Table 1 DWPWG – Summary of Tiered Finished Water Quality Goals

Desulation	RegulationTeir 1 Goal Groundwate r OnlyTier 2 Goal GWUDI FacilityTier 3 Goal Enhanced WQ Goal		Regula	Regulatory Limit	
Regulation		GW	GWUDI		
Virus Inactivation	4 log removal /inactivation	≥2.0 log removal through filters ≥ 2.0 log inactivation through Disinfection ≥ 4.0 log removal (total)	<u>None</u>	4-log Removal/ Inactivation	4 log removal/ inactivation
Cryptosporidium Inactivation	<u>None</u>	2-long removal/ inactivation	<u>None</u>	none	None- Bin 0
TOC Removal Through Process	None	25% Removal	25% Removal	As necessary to achieve goals	25%
Disinfection By-Pr	oducts				
TTHM ⁽¹⁾	<u><</u> 64 μg/L	<u><</u> 64 μg/L	<u><</u> 50 μg/L	<u><</u> 80 µg/L	<u><</u> 80 μg/L
HAA5 ⁽¹⁾	<u><</u> 48 μg/L	<u><</u> 48 µg/L	<u><</u> 50 μg/L	<u><</u> 60 µg/L	<u><</u> 60 µg/L
Total Chlorine	1.2-1.5 mg/L	1.2-1.5 mg/L	< 4.0 mg/L	>0.2 mg/L and < 4.0 mg/L	> 0.2 mg/L and < 4.0 mg/L
Bromate (BrO ₃ -)	<u><</u> 10 µg/L	<u><</u> 10 μg/L	<u><</u> 5 μg/L	<u><</u> 10 μg/L	<u><</u> 10 μg/L
Chlorite (ClO ₂ -)	<0.4 mg/L	< 0.4 mg/L	<u><</u> 1.0 mg/L	<u><</u> 1.0 mg/L	<u><</u> 1.0 mg/L
Finished Water St	ability				
рН	8.5 to 9.0 S.U.	8.5 to 9.0 S.U.	7.5 to 8.5 S.U.		Sufficient to retain effectiveness of disinfectant and high enough to limi nitrification.
Total Hardness	150 mg/L as CaCO₃	150 mg/L as CaCO₃	NA	NA- Internal Goal	NA- Internal Goal

Table 1	DWPWG – Summary	of Tiered Finished Water Quality Goals (c	cont.)

(1) Running annual average of locations selected in accordance with IDSE (typically long duration time) required by Stage II D/DBPR.

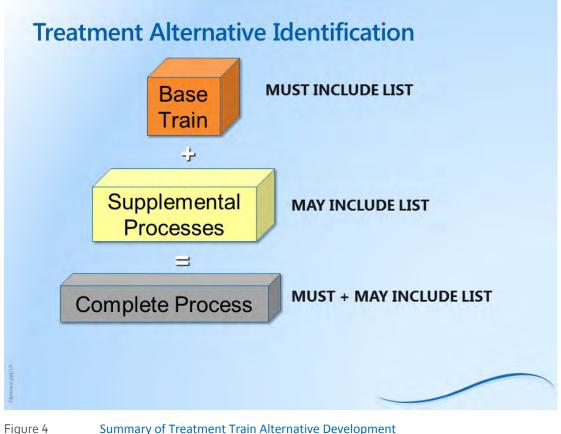
(2) California became the first state in the nation in 2014 to issue a drinking water standard for chrome 6, setting a maximum concentration of 10 parts per billion. However, in August 2017, the State Water Resources Control Board removed the cap in response to a Sacramento judge's ruling that said the regulation was invalid. Based upon current research, a national standard of 20 ppd is much more likely in the distant future.

The workshops conducted as part of the visioning process included a comprehensive review and discussion of the potential regulations and anticipated impacts (if any) on any potential decisions regarding treatment process. The workshops associated with the visioning portion of the project are provided in Appendix D. The DWPWG provided this tiered approach to aid in evaluating the benefit:cost ratios associated with progressively higher levels of treatment than required by current regulations.

2.7 Treatment Concept Development

Based upon the visioning process, the DWPWG developed a list distinguishing the "must haves" with the "may haves" for the treatment alternatives development and evaluation. These are presented in Table 2.

Element	Definition	Components
Must Include	Elements that must be included in the development of the treatment plant expansion alternative that satisfy the Tier 1 water quality goals.	 Expansion must be performed on existing site. Continued use and expansion of the existing wellfield per the recommendations of the IWRP. Meets all current regulations for a Groundwater Treatment facility. Continue satisfying secondary standard MCLG's and soften to a finished water hardness of 150 mg/L as CaCO₃.
May Include	Elements that contribute to enhancements of the treatment process to achieve advancement of the process to satisfy one or more of the goals specifically to achieve one or more of the Tier 2 or Tier 3 water quality goals.	 Allow entire facility (existing and expanded capacity) to satisfy the regulatory requirements of a GWUDI facility. Will enable the City of Columbia to utilize free chlorine as a secondary disinfectant in the distribution system during the entire year.⁽¹⁾ Will include technologies and operational techniques that include the best available control technologies for contaminants of emerging concern (CEC).


Table 2	Summary	of Must Haves and Ma	/ Haves for Treatment	Plant Expansion Alternatives
---------	---------	----------------------	-----------------------	------------------------------

Notes:

(1) Currently the city utilizes a periodic "free chlorine burn" to control nitrification within the distribution system. However, this is performed at lower temperatures to ensure compliance with the stage II Disinfection by Product rule.

Figure 4 presents a summary of the concept for examination of treatment alternatives by the DWPWG. The concept is to provide a "base" treatment alternative which, at a minimum, is designed to satisfy all of the "must have" criteria provided in Table 2. Other unit processes or groups of processes would be provided as a "supplement" to provide all or some of the tiered water quality goals associated with the "may have" criteria provided in Table 2.

gore 4 Summary of Treatment Train Alternative Development

2.8 Treatment Train Identification and Fatal Flaw Analysis

Once the boundaries and goals for the treatment process have been established, the final phase of the visioning process is to examine the suite of potential "base" and "alternative" treatment processes that potentially be included as part of a treatment alternative and examine each of these potential processes for a "fatal flaw" that would eliminate this process from further consideration. In this manner, the visioning process can take an almost unlimited combination of treatment alternatives into a shortlist of those that, in the opinion of the DWPWG, are suitable for further examination and evaluation as part of the structured decision analysis approach described in the next section.

2.8.1 Treatment Technology Identification

Figure 5 below summarizes the potential technologies examined for the base and supplemental unit processes for the McBaine WTP. These were grouped based upon the following characteristics:

 Softening Treatment Technologies: The implementation of these technologies will, among other elements, enable the McBaine WTP to satisfy the base treatment goal of providing a finished water hardness of 150 mg/L. In addition if paired with the appropriate technologies will allow the continued use of the well field and provide treatment that would, at a minimum, satisfy the requirements of a groundwater treatment facility.

- 2. Filtration Technologies: The implementation of these technologies will enable the McBaine WTP to provide a physical filtration element as part of the base or supplemental alternative. This is particularly important for a facility to meet the requirements of a groundwater under direct influence of a surface water.
- 3. Oxidation/Disinfection Technologies: The implementation of these technologies either by themselves or as part of another system will provide disinfection and/or oxidation within the treatment process. This becomes increasingly important as the tier levels of water quality increase. The lowest tier, only requires disinfection/oxidation to remove viruses and iron/manganese, respectively. The second tier or GWUDI tier, will require a higher level of disinfection to satisfy these standards. The third tier may require a much stronger level of disinfection/oxidation involving the generation of a hydroxyl radical to provide sufficient oxidation to satisfy the goal of providing a technology that maximizes the reduction of CEC compounds.
- 4. DBP/DBP Precursor Removal Technologies: The implementation of these technologies either by themselves or in combination with another treatment technologies will provide removal of either disinfection by-products (DBPs) themselves or DBP precursors to provide the enhanced level of treatment required to eliminate the need of chloramines as a secondary disinfectant.

	ss Removal Technology	Filtratio	
atal law	Treatment Technology	Fatal Flaw	Treatment Technology
	Conventional Softening		Conventional Filtration – Constant Rate
	High Rate Softening		Ultrafiltration Membranes
	Enhanced Softening		Deep bed filtration – Constant Rat
	Softening with Caustic		Alternative (Slow Sand Diatomaceous Earth)
	Anion Exchange		MnO2 Coated Media Filtration
	Split Treatment		Manganese Greensand
	Nanofiltration/RO		Nanofiltration/RO
	Pelletized Lime Reactor		Cartridge Filtration
	Electromagnetic		Declining Rate Filtration
	Home POU devices	-	
	Home POU devices	DBP Pro	ecursor Removal Technology
CEC Rer	Home POU devices	DBP Pro Fatal Flaw	ecursor Removal Technology Treatment Technology
Fatal		Fatal	
Fatal	noval/Oxidation Technology	Fatal	Treatment Technology GAC Filter Contactors
Fatal	noval/Oxidation Technology Treatment Technology	Fatal	Treatment Technology GAC Filter Contactors
Fatal	noval/Oxidation Technology Treatment Technology Ferrate	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm)
CEC Rer Fatal Flaw	noval/Oxidation Technology Treatment Technology Ferrate Free Chlorine	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors
Fatal	noval/Oxidation Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO
Fatal	noval/Oxidation Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide Ozone or Ozone/Peroxide	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO Enhanced Coagulation
atal	Inoval/Oxidation Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide Ozone or Ozone/Peroxide Wet Air Oxidation	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO Enhanced Coagulation Ozone Biofiltration
atal	rreatment Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide Ozone or Ozone/Peroxide Wet Air Oxidation UV/Peroxide	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO Enhanced Coagulation Ozone Biofiltration Chlorine Dose Control
Fatal	Inoval/Oxidation Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide Ozone or Ozone/Peroxide Wet Air Oxidation UV/Peroxide UV/Titanium Dioxide	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO Enhanced Coagulation Ozone Biofiltration Chlorine Dose Control Anion Exchange Beds Chloramination (w/ Nitrification
Fatal	Inoval/Oxidation Technology Treatment Technology Ferrate Free Chlorine Chlorine Dioxide Ozone or Ozone/Peroxide Wet Air Oxidation UV/Peroxide UV/Titanium Dioxide UV/Peracetic Acid	Fatal	Treatment Technology GAC Filter Contactors PAC Contactors (Actiflow CARBtm) Post Filter GAC Contactors NanoFiltration/RO Enhanced Coagulation Ozone Biofiltration Chlorine Dose Control Anion Exchange Beds Chloramination (w/ Nitrification Action Plan)

Potential Treatment Technologies Identified for Fatal Flaw Analysis

2.8.2 Fatal Flaw Analysis

The final step in the visioning process is to select for a group of technologies that have a high potential of being incorporated as part of the "Base" or "Base+Supplimental" treatment alternatives. The selection is based upon a "fatal flaw" analysis to eliminate the process or processes that possess one or more of these fatal flaws.

Table 3 presents a summary of the fatal flaws applied to the treatment technologies.

Table 3 Summary of Fatal Flaws

Fatal Flaw	Description	Comment
Scale	Technology has never been constructed at this scale. This can either be measured by mgd or by another parameter such as ppd or other capacity element.	Historically there have been significant issues with trying to apply a higher scale for some treatment technologies.
Inappropriate Technology	Technology will not be capable of achieving the goals either by itself or as part of a treatment ensemble.	
Extremely Inflated Costs	Technology is appropriate and can achieve goals but because of specific conditions (geographical, energy costs, operational costs, etc.) the costs to install, operate and maintain can be magnitudes higher than other technologies.	Because of antidegradation issues with the Missouri River and the inability to locate a diffuser in the river, disposal of reject becomes an issue with RO systems.
Not Acceptable to the Community	This relates to the acceptance of the technologies by the community. For example, there are some communities that have taken the stance that anything that contributes significantly to increasing the carbon footprint of the utility will not be allowed.	The DWPWG was expected to provide guidance during the fatal flaw analysis.

Figure 6 below presents a summary of the fatal flaw analysis for the softening processes to be evaluated as part of the "base" treatment train. It evaluating this it was understood that these were to be incorporated or integrated as part of the existing infrastructure at the treatment facility and that that infrastructure was modified to the extent recommended by the 2017 Condition Assessment Report.

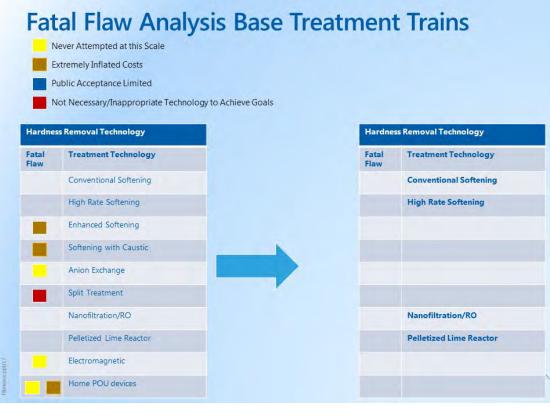


Figure 6 Fatal Flaw Analysis – Hardness Removal Technologies

Figure 7 presents the fatal flaw analysis for the filtration technologies to be employed as part of the base or as part of an advanced treatment technology. Normally, in these cases it would be appropriate to eliminate reverse osmosis because of its typically high cost. However, because reverse osmosis (RO) offers potential significant benefits to all of the tiered water supply goals, it will be evaluated further as a base alternative.

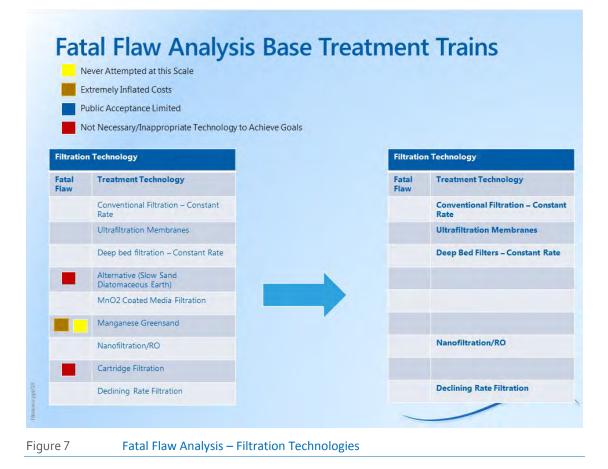
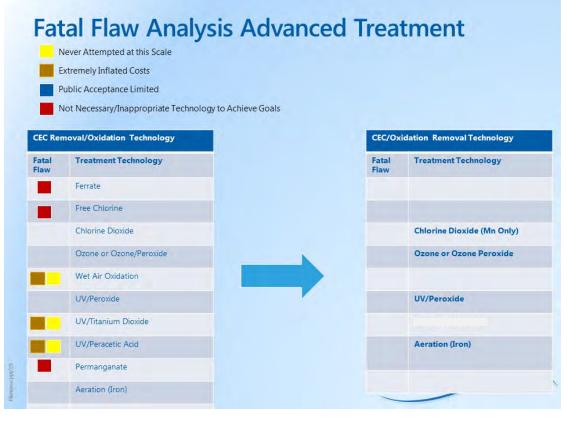



Figure 8 presents the fatal flaw analysis of the advanced oxidation and disinfection technologies. The technologies were selected based upon historical performance as part of a multi-barrier process involving oxidation to form hydroxyl radicals followed by biofiltration commonly employed in drinking water for disinfection and oxidation, as in the case of ozone or ultraviolet (UV); or advanced oxidation processes (UV peroxide) employed in wastewater reuse applications specifically for the reduction of contaminants of emerging concern.

Figure 8 Fatal Flaw Analysis – CEC Removal/Oxidation Technologies

Figure 9 provides a summary of the fatal flaw analysis for the DBP/DBP by-product precursor removal technologies for the advanced treatment processes as part of the supplemental treatment process. These have been shortlisted to technologies and processes commonly employed in the drinking water field to reduce the potential for disinfection by product formation when using free chlorine by removing the precursors that react to form disinfection byproducts (total organic carbon) due to the nature of the disinfection by products formed, it was found during the previous studies that removal of disinfection by-products after formation by physical unit processes (such as air stripping) were impractical because some of the compounds formed required a sufficiently high number of aerators that it became too costly to employ with in the distribution system.

E	xtremely Inflated Costs	Not Necessary/Inappropriate Technolog	y to Achieve Goals
DBP Pre	ecursor Removal Technology	DBP F	Precursor Removal Technology
Fatal Flaw	Treatment Technology	Fatal Flaw	Treatment Technology
	GAC Filter Contactors		
	PAC Contactors (Actiflow CARBtm)		PAC Contactors (Actiflow CARBtm)
	Post Filter GAC Contactors		Post Filter GAC Contactors
	NanoFiltration/RO		NanoFiltration/RO
	Enhanced Coagulation		Enhanced Coagulation (only in Bypass
	Ozone Biofiltration		
	Chlorine Dose Control		
	Anion Exchange Beds		
	Chloramination (w/ Nitrification Action Plan)		Chloramination (w/ Nitrification Action Plan)
	MIEX (magnetic Ion Exchange)		MIEX (magnetic Ion Exchange)
-	Air Stripping		

Figure 9 Fatal Flaw Analysis – DBP/DBP precursor Removal Technologies

The development of a shortlist of treatment technologies within the framework of the established boundaries completed the visioning phase of the DWPWG process. The next phase involves the assembly of viable alternatives that includes a base treatment process with and without the supplemental processes to achieve a particular tiered water quality goal and the incorporation of the structured decision analysis process to shortlist, analyze, and select the recommended treatment alternative from this suite of viable alternatives.

Section 3

ALTERNATIVE EVALUATION

3.1 Purpose

The purpose of the evaluation phase of the project was to establish a shortlisted set of viable base and supplemental alternatives that could be evaluated in additional detail. This included the following:

- Establish a set of viable base and supplemental alternatives.
- Screen the alternatives using a level 5 cost estimate.
- Select criteria that will be used to evaluate the alternatives.
- Establish weighting of the criteria and assign scores for each alternative.
- Rank the alternatives with respect to the criteria weighting and scoring and establish a shortlist of alternatives for further evaluation.

3.2 Meetings and Workshops

The following public meetings were held during the evaluation phase of the project:

- Criteria Selection Workshop October 11, 2017.
- Pairwise Comparison and Ranking Workshop I November 13, 2017.
- Pairwise Comparison and Ranking Workshop II January 8, 2018.

A summary of the workshop materials are provided in Appendix E.

3.3 Establish Viable Set of Treatment (Base and Supplemental) Alternatives

3.3.1 Establish Potential Combination of Base and Supplemental Alternatives to Achieve Treatment Goals

At the completion of the visioning process, the boundaries of the investigations were established and potentially viable Treatment Technologies were identified following a fatal flaw analysis. The next step in the process employed by the DWPWG was to assemble a viable set of base and supplemental alternatives from these treatment technologies. As previously discussed these would consist of a base treatment alternative that accomplished, at a minimum the first tier of water quality goals with supplemental alternatives that would permit achievement of all or some of the advanced tier water quality goals. Table 4 provides a summary of the preliminary alternatives assembled for the "base and Supplemental" treatment technologies established from the visioning process.

Table 4 Summary of Preliminary Alternatives

Tier 1 Water Quality Goals:	Tier 2 –	Tier 3 Water Quality Goals		
Base Alternatives	GWUDI Compliance	DBP Control	CEC Removal	
B1.1 - Expand Existing Plant w/Conventional Softening	•	0	0	
(Rerate Filters)		Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
B1.2 - Expand Existing Plant w/Conventional Softening	0	0	0	
(New 15 mgd Filter Train)	Add S1.1	Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
B2 - New 15 mgd Treatment	0	0	0	
Train	Add S1.1	Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
B3 - Replace Filters w/UF	•	0	0	
Membranes		Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
B4 - Replace Plant w/RO	•	•	O	
Facility		Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
B5 - Replace Conventional	•	0	0	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3, or S	52.4 Add S3.1, or S3.2	
Кеу:				

• Yes • Partial • No

S1.1 - Expansion to GWUDI

S2.1 - Granular Activated Carbon (GAC)

S2.2 - Magnetic Ion Exchange (MIEX)

> S2.3 - Actiflo™ CARB

S2.4 - Ozone/Biofiltration

➢ S3.1 - UV Disinfection/Peroxide

S3.2 - Ozone/Biofiltration

3.3.2 Screen Base Alternatives

Table 5 presents the cost classification system as applied in Engineering, Procurement, and construction for the Process Industries as developed by the American Association of Cost Estimators (AACE). To conduct further screening of these alternatives, level 5 cost estimates were prepared of each of the alternatives to determine if the anticipated cost range of one or more of these alternatives was substantially higher.

Estimate Class	Primary Characteristic	Secondary Characteristic		
	Maturity Level of Project Definition Deliverables (as % of definition)	End Usage – Typical Purpose of Estimate	Methodology – Typical Estimating Method	Expected Range of Accuracy Typical variation in low to high
Class 5	0% to 2%	Concept Screening	Capacity factored Parametric models Judgement or analogy	L: -20% to +50% H: +30% to +100%
Class 4	1% to 15%	Study or Feasibility	Equipment factored Parametric models	L: -15% to +30% H: +20% to +50%
Class 3	10% to 40%	Budget Authorization or Control	Semi-detailed unit costs with assembly level line items	L: -10% to -20% H: +10% to +30%
Class 2	30% to 70%	Control or bid/tender	Detailed unit costs with forced detail take-off	L: -5% to -15% H: +5% to +20%
Class 1	65% to 100%	Check estimate or bid/tender	Detailed unit costs with detailed take-off	L: -3% to -10% H: +3% to +15%

Table 5 AACE Cost Classification System

Notes:

(1) Taken from 18R-97 Cost Estimate Classification System Published by AACE.

Based upon the comparison of the level 5 estimates for the capital and life cycle costs associated with each of the base alternatives, the following conclusions were made:

- 1. Eliminate Base Alternative B4 Replace Plant with RO facility: This alternative was eliminated due to a higher capital and life cycle cost of the alternative with respect to other combination of base and supplemental alternatives that accomplished the same water quality goals.
- 2. Eliminate Base Alternative B5 Pellet Softeners: this alternative was eliminated due to a higher life cycle cost of the alternative with respect to other base alternatives that accomplished the same water quality goals.

3.3.3 Screen Supplemental Alternatives

Similar to the base alternatives, the supplemental alternatives were screened for excessive costs (capital and/or life cycle) using a level 5 estimate. The conclusions of this screening process were as follows:

 Eliminate Supplemental Alternative S2.2 (MIEX Carb) from consideration due to high operating costs (higher life cycle) than other viable DBP precursor removal technologies. Bench scale testing indicating an extremely low amount of bed volumes (number of volumes processed before resin becomes ineffective) leading to high operating costs due to resin loss during regeneration.

- 2. Eliminate Supplemental Alternative S2.4: An advanced oxidation process (ozone, Ozone peroxide, UV-peroxide, etc.) followed by biofiltration as a means to reduced disinfection by product precursors as results from other installations indicate this will not be sufficient to reduce disinfection by product precursors to allow complete use of free chlorine as a disinfectant in the distribution system. These options will remain, however, due to excellent ability to reduce CEC compounds.
- 3. Eliminate Supplemental Alternative S3.1 UV Disinfection: This alternative was eliminated due to the high costs of maintaining UV disinfection systems employing advanced oxidation facility downstream of a softening process.

Table 6 below presents a summary of the remaining viable alternatives following the preliminary screening process.

Tier 2 – **Tier 3 Water Quality Goals** Tier 1 Water Quality Goals: GWUDI **Base Alternatives** Compliance **DBP** Control **CEC Removal** B1.1 - Expand Existing Plant • 0 0 w/Conventional Softening (Rerate Filters) Add S2.1, S2.2, S2.3, or S2.4 Add S3.1, or S3.2 B1.2 - Expand Existing Plant 0 0 0 w/Conventional Softening (New 15 mgd Filter Train) Add S1.1 Add S2.1, S2.2, S2.3, or S2.4 Add 53.1, or 53.2 0 0 0 B2 - New 15 mgd Treatment Train Add \$3.1, or \$3.2 Add S1.1 Add S2.1, S2.2, S2.3, or S2.4 • 0 B3 - Replace Filters w/UF 0 Membranes Add S2.1, S2.2, S2.3, or S2.4 Add S3.1, or S3.2 . e **B4** - Replace Plant w/RO Facility Add S2.1, S2.2, S2.3, or S2.4 Add S3.1, or S3.2 **B5** - Replace Conventional ٠ Ω Softening w/Pellet Softening Add S2.1, S2.2, S2.3, or S2.4 Add S3.1, or S3.2

Table 6Summary of Remaining Viable Alternatives Following Initial Screening Using AACE Level 5 CostEstimates

Key:

● Yes ● Partial ○ No

S1.1 - Expansion to GWUDI

S2.1 - Granular Activated Carbon (GAC)

→ S2.2 Magnetic Ion Exchange (MIEX)

S2.3 - Actiflo™ CARB

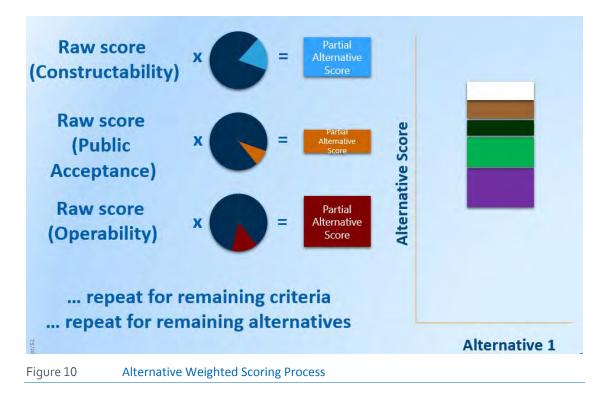
→ S2.4 Ozone/Biofiltration

➤ S3.1 UV Disinfection/Peroxide

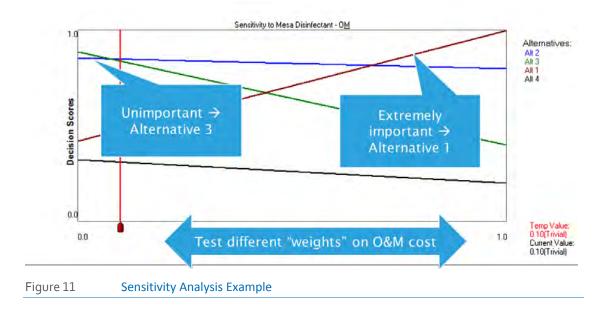
S3.2 - Ozone/Biofiltration

3.4 Evaluation Criteria

The Criteria Selection Workshop was held with the DWPWG on October 11, 2017. As part of this workshop, potential evaluation criteria and sub-criteria for the various alternatives were presented and discussed. In addition, the Structured Decision Analysis process was presented.


3.4.1 Structured Decision Analysis

The Structured Decision Analysis (SDA) that was used for the evaluation process is an effective way of making an informed decision for a complex problem. The primary benefit of using SDA is that it's designed to deal explicitly with uncertainty, and responding transparently to public preferences or values in the decision making process. This process can be divided into three simple phases each containing helpful steps for problem solving as seen below:


- Structured Decision Analysis Phase I:
 - Define the decision makers and a simple and clear decision statement.
 - Define a potential set of viable alternatives.
 - Select the criteria that will be used to differentiate the alternatives.
 - Assign weights to the criteria and assure there is no redundancy nor 'must haves' (pass/fail criteria).
- Structured Decision Analysis Phase II:
 - Score each alternative against each criterion (without "weight").
 - Identify 'data gaps' or 'knowledge gaps' as a part of the scoring.
 - Fill 'data and knowledge gaps'.
 - Combine the scores and weights to rank the alternatives.
- Structured Decision Analysis Phase III:
 - Complete final ranking of each alternative.
 - Select 'best' alternative.
 - Test sensitivity of 'best' (the gut check analysis).
 - Assign the 'devil's advocate' to assure a robust decision.

In general, the SDA model receives input from the group making the decisions (DWPWG) regarding the selection and weighting of criterion. Each alternative is then scored against the criterion. The scores and weights are then combined to develop a ranking of the alternatives. This concept is illustrated in Figure 10.

Following the ranking of alternatives, the model can then be used to test the sensitivity of the top alternatives. Criteria weightings that were previously determined can be adjusted to determine their effect on the alternative. This concept is illustrated in Figure 11. It can be seen, that as the importance of operation and maintenance costs is adjusted, the top alternative can change.

3.4.2 Criteria Selection and Ranking

During the Criteria Selection Workshop, the DWPWG identified the criteria from which to base the alternatives screening process. Following this, the criteria were grouped into primary criteria and sub-criteria. The primary criteria that were agreed upon included constructability, water quality, operability, project cost, and GWUDI facility.

The relative importance of each primary criterion was determined by pair-wise comparison by the DWPWG members. Sixteen sub-criteria were identified and grouped with one of the five primary criteria by the DWPWG members. The relative importance of the sub-criteria associated with each primary criterion was similarly determined by pair-wise comparison by each of the DWPWG members and submitted to Carollo for analysis. A summary of the submitted criteria evaluation forms is provided in Figure 12.

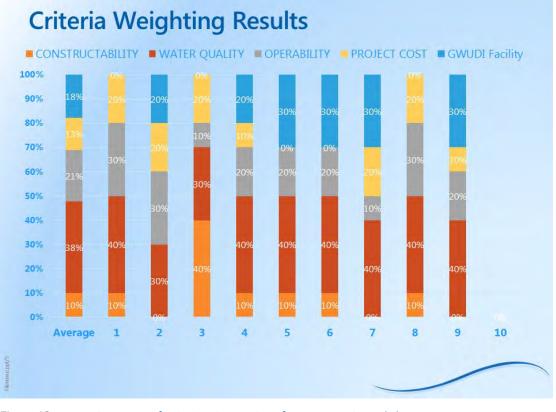


Figure 12 Summary of Pairwise Comparison from DWPWG Worksheets

Criterium Decision Plus (CDP) was used to facilitate assigning a numerical weighting (percent contribution to the total decision) to each primary and sub-criteria based on the results of the pair-wise comparisons. The ultimate numerical weighting assigned to each primary and sub-criteria was defined through an iterative process of reviewing and refining the relative weighting of each criteria. The resultant criteria, sub criteria, and associated weighting are detailed in Table 7. Water quality goals for total trihalomethanes (TTHMs) was the largest contributor to the decision with sustainability and water quality goals for CECs also determined to be significant factors.

0.10	Constructability	
0.043	Maintain Plant Operations	
0.006	Schedule	
0.028	Space Requirements	
0.024	Permitting	
0.38E	Water Quality	
E	Water Quality Goals - TTHMs	
0.098	Sustainability	
0.105	Water Quality Goals - CECs	
0.000	Communication	
0.21	Operability	
0.028	Residuals Production	
0.040	Staffing Requirements	
0.056	Proven Technology	
0.028	Maintenance Complexity	
0.059	Source Water Quality	
0.13	Project Cost	
0.022	Capital Cost	
0.052	Operational Cost	
0.037	Maintenance Cost	
0.022	Life Cycle Cost	
0.18	GWUDI Facility	

Table 7 Summary of Primary and Sub-Criteria Ranking

3.4.3 Establish Criteria Scores:

Table 8 details the primary and sub-criteria used to screen alternatives. It also summarizes the associated goal/measurement and scale applied for scoring of alternatives based on each subcriteria. A scale range of 0-5 was used in all cases, including intermediate values of 1, 2, 3, and 4. Table 8 also details the rationale associated with establishing the upper boundary (i.e., score of 5) and the lower boundary (i.e., score of 0) for each sub-criteria. Intermediate scores were assigned by relative comparison of each sub-criteria amongst alternatives. The sub-criteria scores were then multiplied by their associated weighting and totaled to result in a total score for each alternative for direct comparison.

Primary Criteria	Sub-Criteria	Goal/Measurement	Scale Range
	Maintain Plant Operations	Plant must be able to produce finished water during construction activities.	0 - Unable to phase process with multiple plant shutdowns. 5 - Many options for phasing process alternative with minimal disruption to existing plant operations.
	Schedule	Construction duration in months, shorter duration is desired.	0 - Very long construction period.5 - Short construction period.
Constructability	Space Requirements	Square feet, Smaller footprint is better.	 0 - Largest footprint required to accommodate WTP structures (not including residuals handling). 5 - Smallest footprint required to accommodate WTP structures (not including residuals handling).
	Permitting	Number of permits required and difficulty to obtain.	0 - Numerous permits needed requiring significant involvement from multiple stakeholders. 5 - Minimal permitting requirements with limited stakeholder involvement.
Water Quality	Water Quality Goals - TTHMs	A process that can remove TTHMs and other DBPs.	0 - No removal of TTHMs or DBPs. 5 - Highest removal of TTHMs and DBPs based upon Best Available Control Technology.
	Sustainability	Minimize carbon footprint. Minimize chemical usage. Maximize energy efficiency. Opportunities for reuse.	 0 - Process is not energy efficient and uses large quantities of chemicals for treatment. No opportunities for reusing waste materials. 5 - Process is efficient and uses small quantities of chemicals, uses less energy, and offers opportunities for reusing waste
	Water Quality Goals - CECs	A process that can remove CECs.	materials. 0 - No removal of CECs. 5 - Highest removal of CECs based upon Best Available Control Technology.
	Communicati on	A process that is easily communicated to and accepted by the public and the decision makers is good.	 0 - Process alternative is difficult to demonstrate to stakeholders and is difficult to obtain stakeholder and general public buy-in. 5 - Process alternative is easy to explain and widely acceptable to stakeholders and general public.

Table 8 Evaluation Sub-Criterion for McBaine WTP Expansion

Primary Criteria	Sub-Criteria	Goal/Measurement	Scale Range
Operability	Residuals Production	Tons per year. Smaller quantities of residuals are desired.	0 - High residuals production. 5 - Low residuals production.
	Staffing Requirements	Alternatives that do not require intensive training and large numbers of operators are desirable.	 0 - Extensive training is required and the process requires several operators at any given time. 5 - Training requirements are less complicated and fewer operators are required to operate the process.
	Proven Technology	Alternatives including processes with a proven track record score higher than newer, less proven technologies.	0 - No full-scale installations. 5 - Extensive full-scale experience both in number of installations and number of years in service.
	Maintenance Complexity	Mechanical Intensity. Alternatives with more processes and/or a higher degree of sophistication are less desirable.	 0 - Numerous processes with extensive short- and long-term maintenance needs. 5 - Fewer processes with low level of sophistication resulting in easier maintenance.
	Source Water Quality	Alternatives include processes that can handle large variability in source water quality without impact to finished water quality is good.	 0 - Many processes sensitive to water quality changes requiring frequent operator intervention. 5- Fewer processes sensitive to water quality changes requiring less operator intervention.

Table 8 Evaluation Sub-Criterion for McBaine WTP Expansion (cont.)

ladie 8 E	valuation Sub critci	rion for MicBaine WTP Expansion (cont.)	
Primary Criteria	Sub-Criteria	Goal/Measurement	Scale Range
	Capital Cost	Initial capital investment necessary to design, procure, construct, and place into successful working operation improvements or process modifications recommended by a particular alternative.	0 – Highest Capital Cost (H) 5 – lowest Capital Cost (L) Other costs (A) will be calculated: A=(10-0)*(H–A)/(H-L)
	Operational Cost	The operational costs over the anticipated life cycle of the process equipment recommended including labor and consumables presented in an annualized basis for assessing impact on rates.	0 – Highest Annual Operational Cost (H) 5 – lowest Operational Cost (L) Other costs (A) will be calculated: A=(10-0)*(H–A)/(H-L)
Project Cost	Maintenance Cost	The maintenance costs over the anticipated life cycle of the process equipment recommended including labor and consumables (oil, grease, etc.) presented in an annualized basis for assessing impact on rates.	0 – Highest Annual Maintenance Cost (H) 5 – Lowest Maintenance Cost (L) Other costs (A) will be calculated: A=(10-0)*(H –A)/(H-L)
	Life Cycle Cost	The total present worth costs representing a summary of the initial capital costs, annualized maintenance costs, and annualized operational costs over a 20 year period presented in "today's dollars" using a discount rate reflective of the time value of money.	0 – Highest Life Cycle Cost (H) 5 – Lowest Life Cycle Cost (L) Other costs (A) will be calculated: A=(10-0)*(H –A)/(H-L)
GWUDI Facility		The assessment of the capability of the facility to maintain full compliance with the water quality goals and regulations associated with a source water classified by the state as a "Groundwater Under the Direct Influence of Surface Water."	 0 – Significant capital and operational/maintenance investment will be required to enable GWUDI compliance. 3 - Relatively minor capital investments (i.e. tweaks in process arrangement) will be required for GWUDI compliance. 4 – Minor operational changes will be required for GWUDI compliance. 5- Facilities are fully compliant with GWUDI regulations and water quality goals associated with at GWUDI facility.

Table 8 Evaluation Sub-Criterion for McBaine WTP Expansion (cont.)

3.4.4 Further Screening Utilizing CDP Software – Base Alternatives

Similar to the original 2012 PDR, CDP software was used to perform the ranking and evaluation of the preliminary alternatives. Each of the remaining base alternatives were further screened with respect to the other base alternatives with respect to the established weighted criteria. Figure 13 presents a summary of the results of the preliminary screening of the base alternatives with respect to the weighted criteria using the CDP platform.

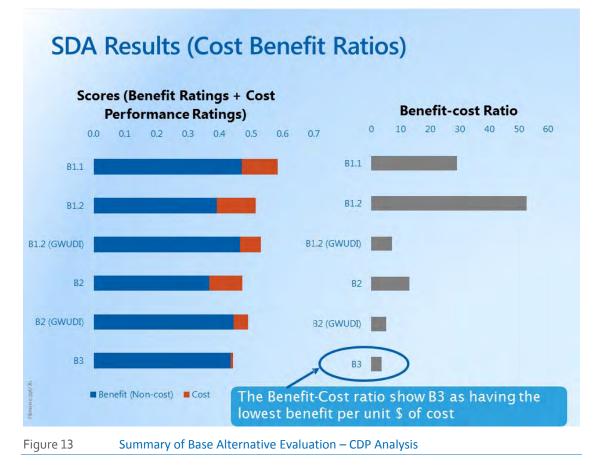


Figure 13 illustrates the low benefit: cost ratio of alternative B3- Ultrafiltration Membranes based upon the evaluation criteria and level 5 cost estimates. Further sensitivity analysis indicated the robustness of the evaluation and the decision to exclude Alternative B3 from further evaluation.

Table 9 presents the updated summary of viable alternatives based upon the results of the screening of the alternatives.

Tier 1 Water Quality Goals:	Tier 2 – GWUDI	Tier 3 Water Quality Goals		
Base Alternatives	Compliance	DBP Control	CEC Removal	
B1.1 - Expand Existing Plant w/Conventional Softening	•	0	0	
(Rerate Filters)		Add S2.1, S2.2 , S2.3 , or S2.4	Add 53.1 , or 53.2	
B1.2 - Expand Existing Plant w/Conventional Softening	0	0	0	
(New 15 mgd Filter Train)	Add S1.1	Add S2.1, S2.2, S2.3 , or S2.4	Add 53.1 , or S3.2	
B2 - New 15 mgd Treatment	0	0	0	
Train	Add S1.1	Add S2.1, S2.2, S2.3 , or S2.4	Add S3.1 , or S3.2	
B3 Replace Filters w/UF	•	Ð	Ð	
Membranes		Add S2.1, S2.2, S2.3, or S2.4	Add S3.1, or S3.2	
B4 - Replace Plant w/RO			£	
Facility		Add S2.1, S2.2, S2.3, or S2.4	Add \$3.1, or \$3.2	
B5 Replace Conventional	- Replace Conventional		_	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3, or S2.4	Add S3.1, or S3.2	
Key:				
• Yes • Partial $^{\circ}$ No				
 \$1.1 - Expansion to GWUDI \$2.1 - Granular Activated Carbon (G/ \$2.2 Magnetic Ion Exchange (MIEX) 				
 S2.2 - Magnetic for Exchange (MEXC) S2.3 - Actiflo™ CARB 	,			

Table 9 Summary of Remaining Viable Alternatives Following Final Screening Using CDP Model

→ S2.4 Ozone/Biofiltration

S3.1 UV Disinfection/Peroxide

S3.2 - Ozone/Biofiltration

Figure 14 presents a summary of the treatment alternatives considered for detailed ranking and evaluation using the CDP model.

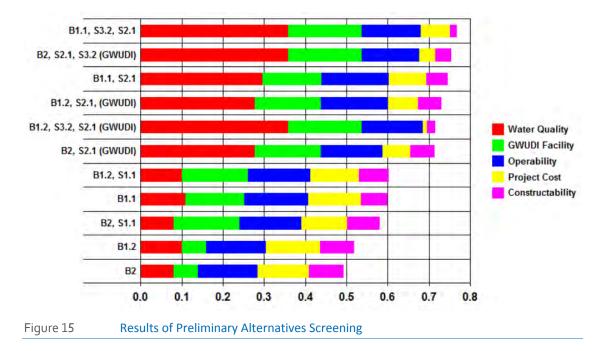
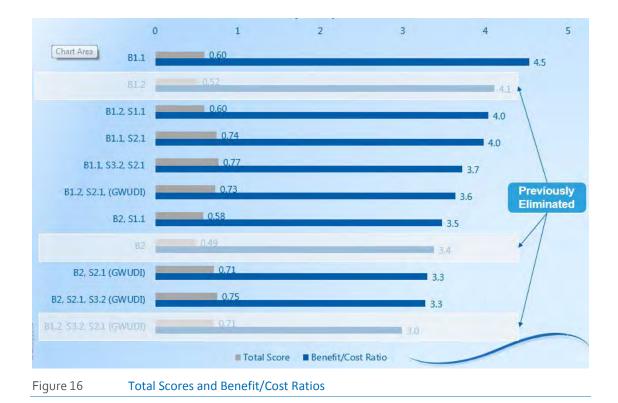

Base	Supplement	Description	Comments
B1.1	No Supplement	Only Upgrade Existing	GWUDI Compliant, Requires Chloramines
B1.1	S2.1	Upgrade Existing With GAC Contactors	GWUDI Compliant Permits use of Free Chlorine
B1.1	S2.1, S3.2	Upgrade Existing with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine
B1.2	No Supplement	New Filters (15mgd)	Not fully GWUDI Compliant Requires Chloramines
B1.2	S1.1	New Filters (15 mgd) with plant upgraded	GWUDI Compliant Requires Chloramines
B1.2	S1.1, S2.1	New Filters (15 mgd) with GAC Contactors	GWUDI Compliant Permits use of Free Chlorine
B1.2	S1.1, S2.1, S3.2	New Filter (15 mgdd) with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine Adds CEC's
B2	No Supplement	New Treatment Train (15 mgd)	Not fully GWUDI Compliant Requires Chloramines
B2	S1.1	New Treatment Train (15 mgd) with plant upgraded.	GWUDI Compliant Requires Chloramines
B2	S1.1, S.2.1	New Treatment Train (15 mgd) and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine
B2	S1.1, S2.1, S3.2	New Treatment Train (15 mgd) with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine Adds CEC's

Figure 14 Summary of Preliminary Alternatives

3.5 Ranking of Preliminary Alternatives

Similar to the original 2012 PDR, CDP software was used to perform the ranking and evaluation of the preliminary alternatives. Figure 15 presents a summary of the rankings that were established with respect to the non-economic and economic criterion previously indicated. The relative weight of each criterion is represented by a particular color band within the total band for each alternative. The higher the value, the stronger that particular alternative satisfies the criteria. The alternatives that best satisfy the relatively ranked criteria are represented with the highest overall bands.



On January 8, 2018, the Pairwise Comparison and Preliminary Ranking Workshop was held to discuss the results of the preliminary screening process and to develop a shortlisted set of alternatives. It can be noted from Figure 15, that because of the high weight given to Water Quality and GWUDI, it was the higher cost alternatives that scored highest and provided the most benefit. Based on the results, the team decided to eliminate the two alternatives that didn't include a GWUDI compliant facility (B1.2 and B2). In addition, it was decided to eliminate Alternative B1.2, S3.2, S2.1, S1.1 (GWUDI) due to the moderate overall score, low constructability rating, and high cost.

Further analysis of the alternatives was done by compiling the benefit/cost ratios for each alternative. This analysis indicated that some alternatives offered little additional benefit at high incremental costs. A summary of the overall ratings and benefit/cost ratios is presented in Figure 16.

Due to the low benefit/cost ratios presented in Figure 16, it was decided to eliminate Alternative B2, S2.1, S1.1 (GWUDI) and Alternative B2, S1.1 (GWUDI). In addition, upon further evaluation of the remaining alternatives, it was determined that due to space constraints on the site, the only viable base alternative that could implement S3.2 (Ozone/Biofiltration) in the future was B2. Because of this, regardless of benefit/cost ratio, it was decided to keep Alternative B2, S2.1, S3.2, S1.1 (GWUDI) and eliminate Alternative B1.1, S3.2, S2.1. In summary, the following alternatives were shortlisted for further evaluation:

- B1.1 Expand existing plant (rerate existing filters).
- B1.1, S2.1 Expand existing plant (rerate existing filters) and add post filter GAC contactors.
- B1.2, S1.1 Expand existing plant (new filter train).
- B1.2, S1.1, S2.1 Expand existing plant (new filter train) and add post filter GAC contactors.
- B2, S1.1, S2.1, S3.2 Expand existing plant (new treatment train), post treatment ozone/Biofiltration and post filter GAC contactors.

Section 4

FINAL RANKING AND RECOMMENDATIONS

4.1 Purpose

The purpose of the final ranking phase of the project was to further define the shortlisted alternatives and develop final rankings that can be used to establish a recommendation. This included the following:

- Identify data gaps, develop layouts, and refine cost opinions.
- Update scores and re-rank shortlisted alternatives.
- Develop final rankings and recommendations.

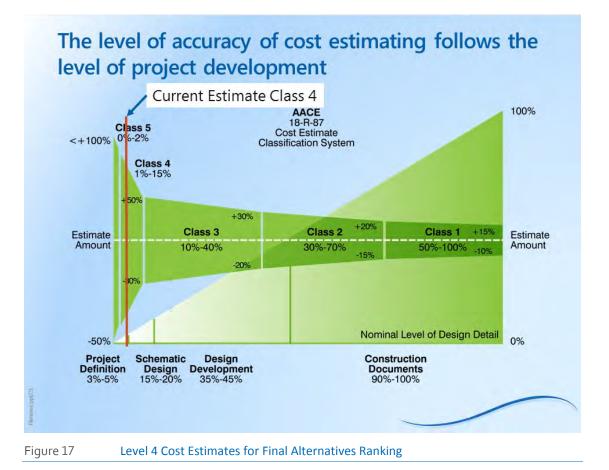
4.2 Meetings and Workshops

The following public meeting was held during the final ranking phase of the project:

• Final Ranking Workshop – January 29, 2018.

4.3 Data Gap Analysis

The purpose of the data gap analysis that was performed was to identify any missing information in order to further refine scores for the shortlisted alternatives. This may include modifying alternatives to address potential operability or permitting issues. Some of the concerns identified during the data gap analysis include the following:


- Due to the hydraulic capacity of existing facilities, improvements to rerate the existing filters may lead to potential problems. Alternatives that include rerating the filters should conservatively consider adding a pump station to address the concern.
- The useful life of the media in GAC contactors is unknown. Alternatives that include GAC contactors should conservatively assume a carbon life of 3 years. Pilot testing is recommended to determine useful life for DBP management.

By identifying these data gaps, the team was able to update scores for each alternative to reflect the results of the data gap analysis providing a more refined ranking.

4.4 Level 4 Cost Estimates

In addition to the data gap analysis, layouts and refined costs were developed for the shortlisted alternatives in order to update scores. This section presents a summary of each shortlisted alternative, along with the defined layouts and process flow diagrams. It should be noted that the cost estimates prepared for the analysis are considered Level 4 estimates by the AACE (see Figure 17) and contain a +50% to -30% level of accuracy. The cost estimates developed for the final rankings are meant to be for relative comparison of the alternatives and are NOT to be used for budgetary purposes due to insufficient detail and lack of elements common to all alternatives (i.e. raw water pipeline, wellfield expansion, etc.).

4.5 Summary of Shortlisted Alternatives

4.5.1 Alternative B1.1 - Expand Existing Plant (Rerate Existing Filters)

This alternative includes construction of two new aerators, modifications to the primary basins, multiple new low lift pump stations, modifications to rerate the existing filters, new clearwells, and a new high service pump station for delivery of finished water to the distribution system. A summary of the highlights included with this alternative are presented below. An overall layout along with a process flow diagram for this alternative is presented in Figure 18 and Figure 19, respectively.

- Water Quality:
 - Likely requires chloramines to satisfy current Disinfection By-Product regulations.
 - Potential future regulatory concerns (CEC's) will need additional processes.
 - No significant improvement in overall water quality (except for GWUDI compliance).
- Operability:
 - Increased maintenance (new pumps).
 - Low lift pumps required to control filtration process and pump to clearwells, increasing complexity.
 - Most efficient use of space (easier phasing).

- Constructability:
 - Large disruption to plant operations (work on existing filters).
 - Minimal footprint of new facilities.
 - Rerating filters requires permitting variance.
- GWUDI Facility:
 - Improved filtration.
 - Disinfection to meet SWTR requirements.
- Project Costs:
 - Capital = \$106 million.
 - O&M = \$3.6 million.
 - Life Cycle = \$160 million.

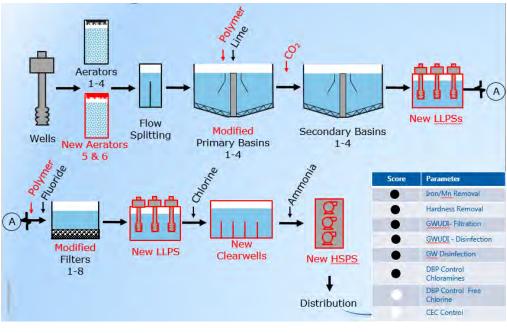
Figure 18 Alternative B1.1 Layout

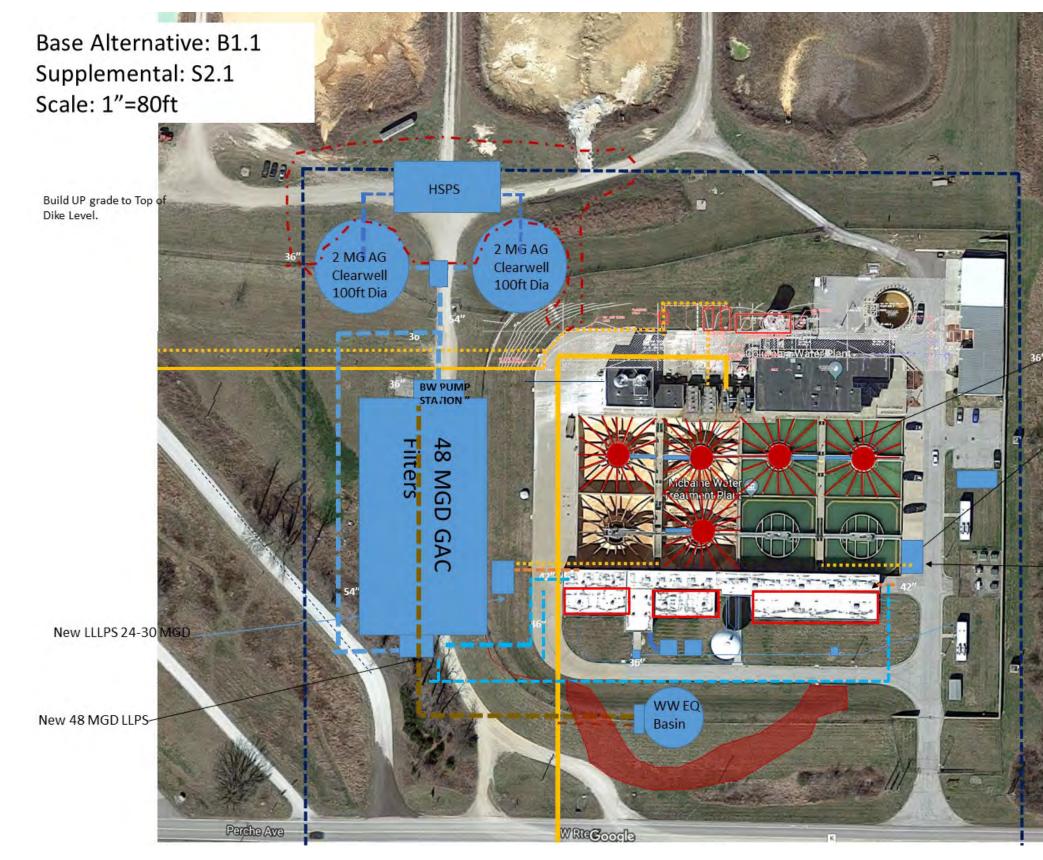
2017-2018 DRINKING WATER PLANNING WORK GROUP - UPDATE TO 2011 PRELIMINARY DESIGN REPORT | MCBAINE WTP | CITY OF COLUMBIA W&L

Rerate Existing Basins to 48 MGD

Existing Filters, Rehab Filters, Piping and Rerate to 48 MGD

- New LLLPS 24-30 MGD



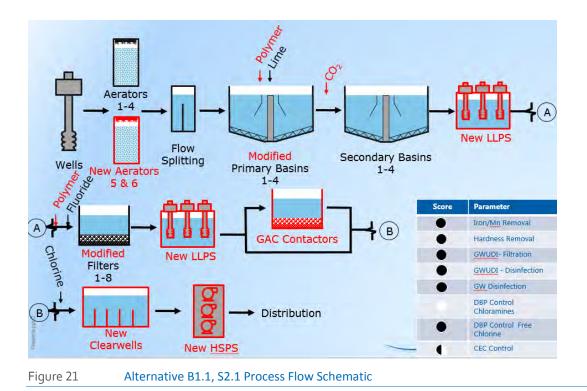

Figure 19 Alternative B1.1 Process Flow Schematic

4.5.2 Alternative B1.1, S2.1 - Expand Existing Plant (Rerate Existing Filters) and Add Post Filter GAC Contactors

This alternative includes the same improvements included in Alternative B1.1 with the addition of construction of GAC contactors. A summary of the highlights included with this alternative are presented below. An overall layout along with a process flow diagram for this alternative is presented in Figure 20 and Figure 21, respectively.

- Water Quality:
 - Ability to design finished water quality to meet DBP regulations without relying on chloramines.
 - Robust process that will remove some CECs. Operating cost may be impacted by future regulations due to process inefficiencies.
- Operability:
 - Additional staffing.
 - Staffing education for new processes (DBP control).
 - Increased maintenance (new pumps and process).
 - Moderate complexity.
- Constructability:
 - Large disruption to plant operations (work on existing filters).
 - Large space requirements will require some use of lagoon space.
 - Rerating filters requires permitting variance.
- GWUDI Facility:
 - Fully compliant.
 - Project Costs:
 - Capital = \$152 million.
 - O&M = \$4.7 million.
 - Life Cycle = \$221 million.

Alternative B1.1, S2.1 Layout Figure 20

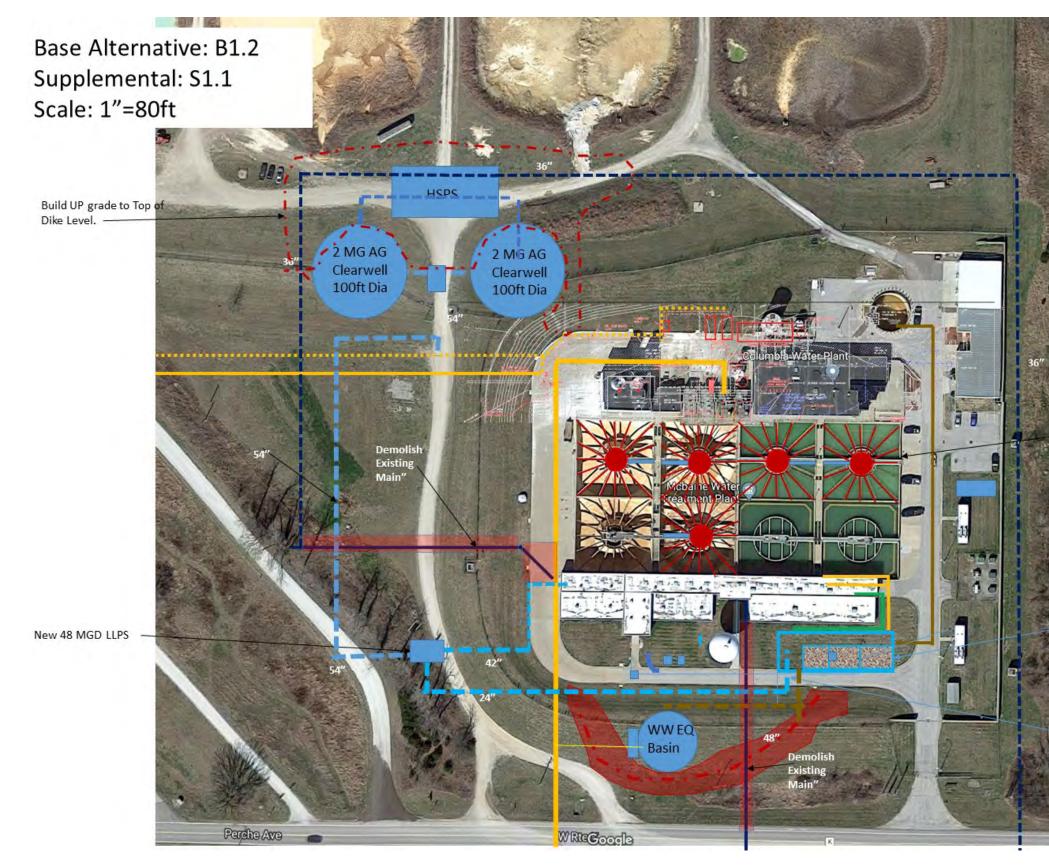


2017-2018 DRINKING WATER PLANNING WORK GROUP - UPDATE TO 2011 PRELIMINARY DESIGN REPORT | MCBAINE WTP | CITY OF COLUMBIA W&L

Rerate Existing Basins to 48 MGD

Existing Filters, Rehab Filters, Piping and Rerate to 48 MGD

- New LLLPS 24-30 MGD

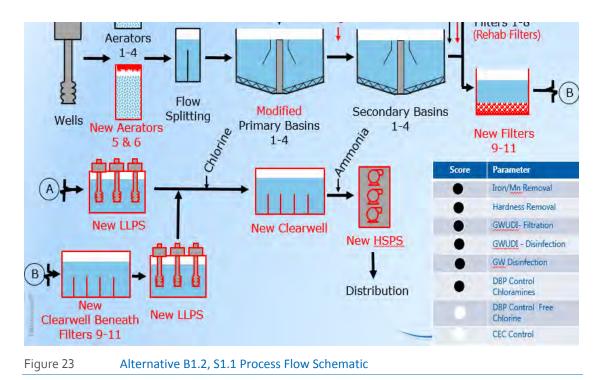


4.5.3 Alternative B1.2, S1.1 - Expand Existing Plant (New Filter Train)

This alternative includes construction of two new aerators, modifications to the primary basins, construction of a new filter train, modifications to existing filters for GWUDI compliance, multiple new low lift pump stations, new clearwells, and a new high service pump station for delivery of finished water to the distribution system. A summary of the highlights included with this alternative are presented below. An overall layout along with a process flow diagram for this alternative is presented in Figure 22 and Figure 23, respectively.

- Water Quality:
 - Likely requires chloramines to satisfy current Disinfection By-Product regulations.
 - Potential future regulatory concerns (CEC's) will need additional processes.
 - No significant improvement in overall water quality (except for GWUDI compliance).
- Operability:
 - Increased maintenance (new pumps and filters).
 - Minimal complexity.
 - Low lift pumps required for phasing and to minimize future construction costs.
 - A little more difficult to phase.
- Constructability:
 - Moderate disruption to plant operations.
 - Moderate space requirements.
- GWUDI Facility:
 - Fully compliant.
 - Project Costs:
 - Capital = \$124 million.
 - O&M = \$3.6 million.
 - Life Cycle = \$178 million.

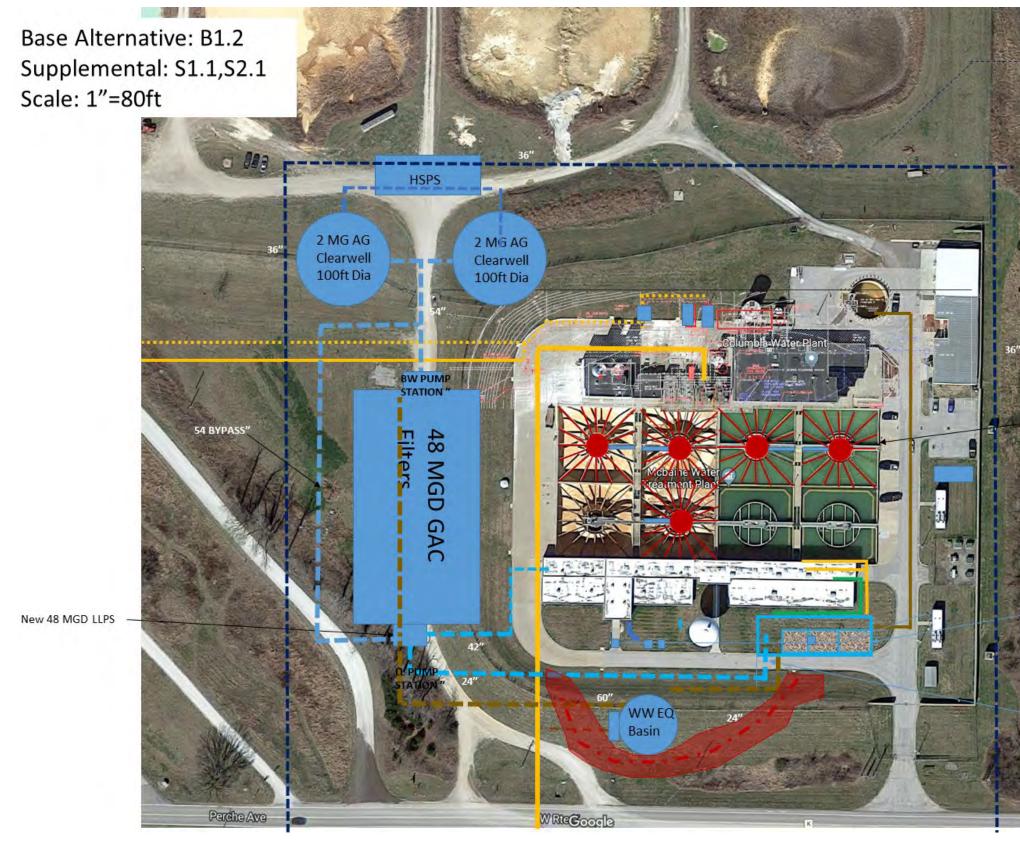
Alternative B1.2, S1.1 Layout Figure 22


2017-2018 DRINKING WATER PLANNING WORK GROUP - UPDATE TO 2011 PRELIMINARY DESIGN REPORT | MCBAINE WTP | CITY OF COLUMBIA W&L

New 15 MGD Filters w/ LLPS

New 15 MGD HSPS and Clearwell

FINAL | MARCH 2018 | 47


4.5.4 Alternative B1.2, S1.1, S2.1 - Expand Existing Plant (New Filter Train) and Add Post

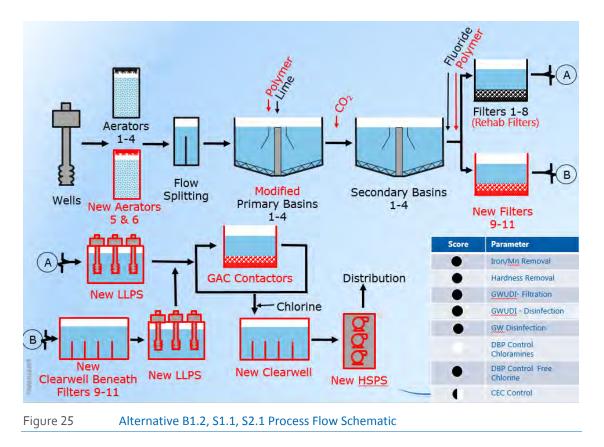
Filter GAC Contactors

This alternative includes the same improvements included in Alternative B1.2, S1.1 with the addition of construction of GAC contactors. A summary of the highlights included with this alternative are presented below. An overall layout along with a process flow diagram for this alternative is presented in Figure 24 and Figure 25, respectively.

- Water Quality:
 - Ability to design finished water quality to meet DBP regulations without relying on chloramines.
 - Robust process that will remove some CECs. Operating cost may be impacted by future regulations due to process inefficiencies.
- Operability:
 - Additional staffing.
 - Staffing education for new processes (DBP control).
 - Increased maintenance (new pumps, filters, and process).
 - Moderate complexity.
- Constructability:
 - Moderate disruption to plant operations.
 - Large space requirements.
- GWUDI Facility:
 - Fully compliant.
- Project Costs:
 - Capital = \$166 million.
 - O&M = \$4.7 million.
 - Life Cycle = \$236 million.


```
Figure 24
                Alternative B1.2, S1.1, S2.1 Layout
```


2017-2018 DRINKING WATER PLANNING WORK GROUP - UPDATE TO 2011 PRELIMINARY DESIGN REPORT | MCBAINE WTP | CITY OF COLUMBIA W&L



................

Rerate Existing Basins to 48 MGD

New 15 MGD Filters w/ LLPS

New 15 MGD HSPS and Clearwell

4.5.5 Alternative B2, S1.1, S2.1, S3.2 - Expand Existing Plant (New Treatment Train), Post Treatment Ozone/Biofiltration, and Post Filter GAC Contactors

This alternative includes construction of a new treatment train consisting of two new aerators, a softening basin, a secondary basin, an ozone contactor, filters, and a low lift pump station. In addition, modifications to the existing train need to be performed, including modifications to Primary Basin No. 1 and No. 2, multiple new low lift pump stations, an ozone contactor, modifications to the filters for GWUDI compliance, new GAC contactors, new clearwells and a new high service pump station for delivery of finished water to the distribution system. A summary of the highlights included with this alternative are presented below. An overall layout along with process flow diagrams for this alternative is presented in Figure 26, Figure 27, and Figure 28, respectively.

- Water Quality:
 - Ability to design finished water quality to meet DBP regulations without relying on chloramines.
 - Best Available Technology for CEC removal. Synergistic impacts with post filter GAC.
- Operability:
 - Additional staffing.
 - Staffing education for new processes.
 - Increased maintenance (new pumps, filters, and process).
 - Most complex alternative to operate (two trains with multiple processes).

- Constructability:
 - Minimal disruption to plant operations.
 - Large space requirements.
- GWUDI Facility:
 - Fully compliant.
- Project Costs:
 - Capital = \$223 million.
 - O&M = \$5.1 million.
 - Life Cycle = \$298 million.

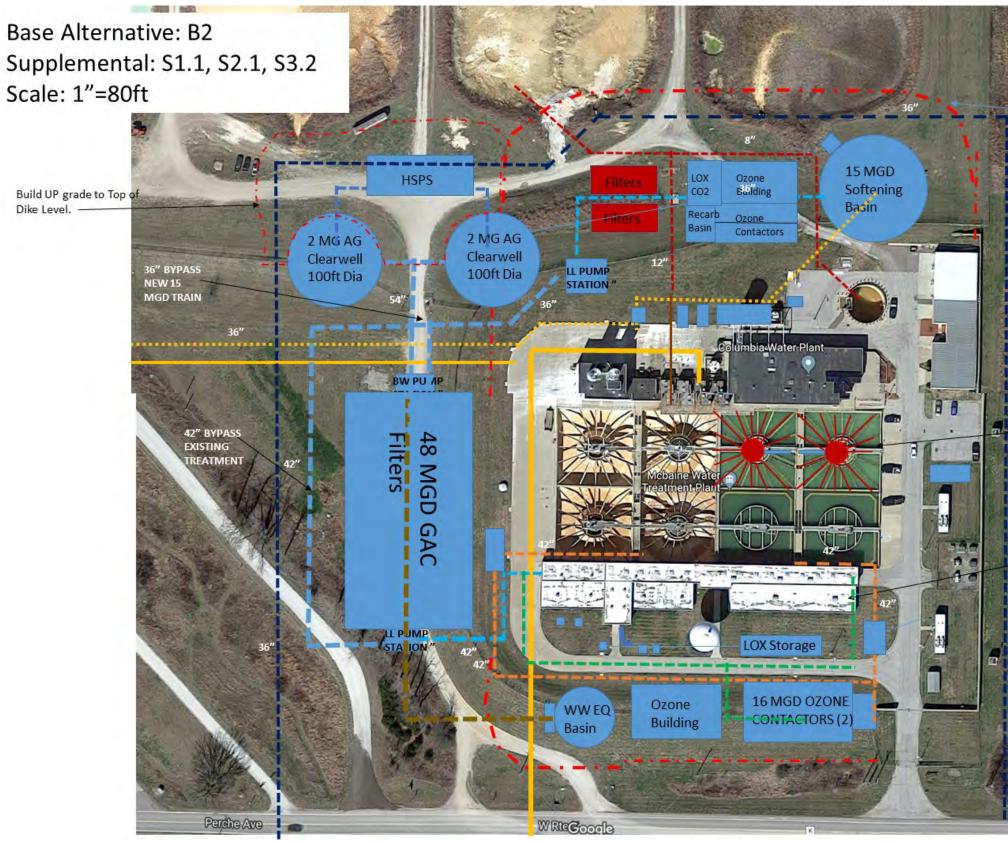
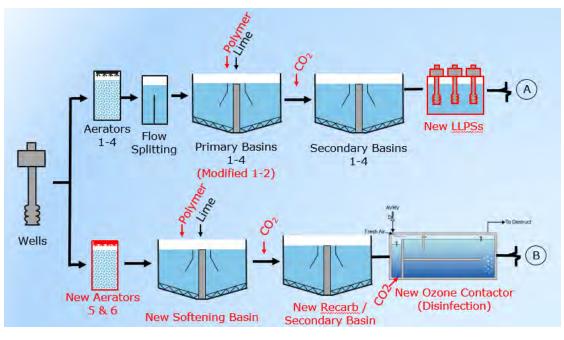
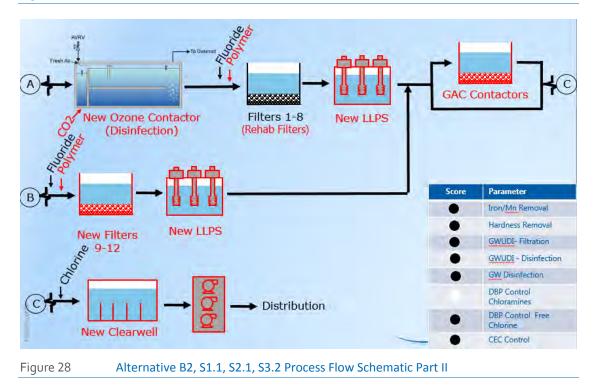


Figure 26Alternative B2, S1.1, S2.1, S3.2 Layout

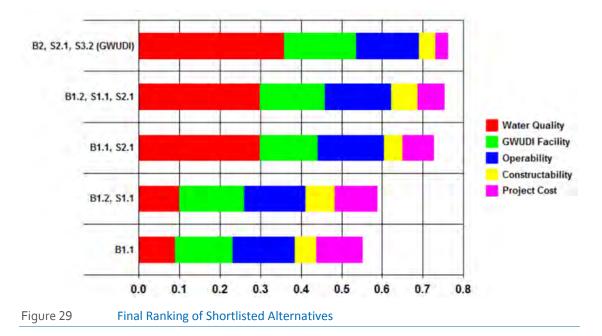


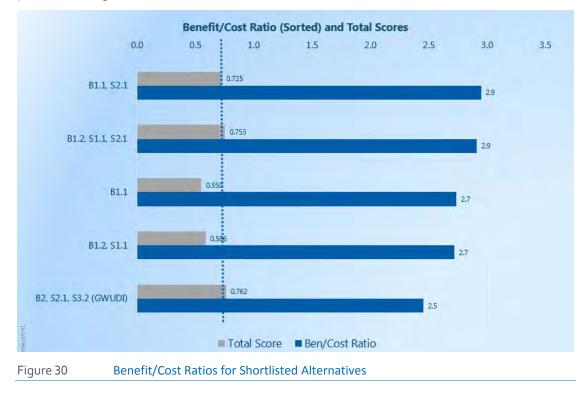
Expand Wall/Dike System to Enclose Treatment Train.


Rehab Existing Basins to increase rating from 24 MGD to 32 MGD

Existing Filters (minimal improvements) keep at 32 MGD

man




4.6 Final Rankings

Using the layouts, refined costs, and updated scores, the shortlisted alternatives were evaluated and re-ranked. The updated rankings were presented to the DWPWG during the Final Ranking Workshop held on January 29, 2018. A summary of the final rankings with respect to the updated non-economic and economic criterion are presented in Figure 29.

Similar to the initial evaluation, because of the high weight given to Water Quality and GWUDI, it was the higher cost alternatives that scored highest and provided the most benefit. The benefit/cost ratios were again analyzed for the shortlisted alternatives and a summary is presented in Figure 30.

The benefit/cost ratios showed that although the alternative containing ozone/Biofiltration (B2, S1.1, S2.1, S3.2), scored incrementally higher than the other alternatives, it had the lowest benefit/cost ratio. Because of this, removing this alternative from consideration was recommended. This left the group with two very viable sets of alternatives that can each be implemented in phases. Alternative B1.1 offers the lowest cost at \$160 million with a total score of 0.550 and can be upgraded to B1.1, S2.1 with a score of 0.725 for an extra \$61 million. Alternative B1.2, S1.1, on the other hand, offers a similar pattern at a slightly higher score (0.586) for \$178 million and it can be upgraded to B1.2, S1.1, S2.1 with a score of 0.753 for an extra \$58 million. This concept of phasing the recommended alternatives is presented in Figure 31.

4.7 Recommendations of Drinking Water Planning Work Group

The DWPWG met on February 26, 2018 to review the final ranking results and provide the final recommendations. The findings and recommendations of the DWPWG are as follows:

- 1. DWPWG Findings:
 - a. The McBaine WTP should consider processes that meet the requirements for a GWUDI Facility.
 - b. The McBaine WTP should utilize treatment technologies to achieve Disinfection By-Products (DBP) compliance without the need for chloramines and to also assist in removal of Contaminants of Emerging Concern (CEC's).

- 2. DWPWG Recommendations:
 - a. Priority should be given to first restoring the plant to its 32 MGD capacity prior to increasing capacity to 48 MGD.
 - b. The base alternatives of B1.1, B1.2, and B2 should be evaluated with the supplemental processes to achieve improved water quality through a phased approach.
 - c. The design on the selected alternative should begin no later than 2020, as indicated in Carollo's analysis, to be in operation no later than 2024, unless design and construction are able to be accomplished sooner.
 - d. In order to improve water quality while the new process train is in design, and construction, repair and/or enhancement of the current filters and pilot testing done to make every effort to return to free chlorine disinfection.
 - e. The rehabilitation and/or enhancement initiatives outlined in the Condition Assessment will address deficiencies in the facility and system and request an updated timeline for these initiatives be produced by Water and Light.

Appendix A DWPWG ORDINANCE

Introduced by ______

Council Bill No. R 48-17 A

A RESOLUTION

establishing a Drinking Water Planning Work Group to assist in an update of the 2011 Water Treatment Plant Expansion Preliminary Design Report.

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF COLUMBIA, MISSOURI, AS FOLLOWS:

SECTION 1. There is hereby established a Drinking Water Planning Work Group to assist in an update of the 2011 Water Treatment Plant Expansion Preliminary Design Report and to provide guidance to the Water and Light Advisory Board and City Council on the following:

- Review current drinking water regulations, including what types of disinfection methods comply with regulations.
- Review Columbia's current water supply conditions.
- Assess the current state of utility industry and customer-side water treatment technology and cost.
- Review and provide input on developed recommendations.
- Develop drinking water planning recommendations.

SECTION 2. The Drinking Water Planning Work Group shall consist of seven (7) members comprised as follows:

- One (1) member shall be a City Council member appointed by the City Council. The initial City Council member appointee is Karl Skala.
- Six (6) members shall be appointed by the City Utilities Water and Light Director from the drinking water customer user groups set forth herein. The initial six (6) appointees are as follows:
 - 1. Residential customer member Julie Ryan (CoMo Safe Water)
 - 2. Commercial customer member Matt Off (Director, Rockbridge HyVee)
 - 3. Industrial customer member Ron Pruett (3M, Plant Engineering)
 - Water industry professional member Terry Merritt (Alliance Water Resources)

- 5. Educational institution member Randy Jackson (Environmental Engineer, Columbia Public School District)
- 6. Healthcare industry member Michael Szewczyk, MD (Chair, Columbia/Boone County Board of Health)

SECTION 3. The Drinking Water Planning Work Group shall also include the following non-voting members:

- Two (2) ad hoc non-voting members shall be members of the Water and Light Advisory Board to be appointed by the Water and Light Advisory Board.
- One (1) ad hoc non-voting member shall be from the Office of Sustainability to be appointed by the Sustainability Manager.

SECTION 4. A quorum to hold a meeting shall consist of four (4) voting members. All meetings shall be open to involvement and participation by as many additional community members who desire to attend.

SECTION 5. The Drinking Water Planning Work Group shall make a final report to the Water and Light Advisory Board of its findings and recommendations by December 31, 2017. The Work Group shall be dissolved upon submitting its final report.

SECTION 6. The Drinking Water Planning Work Group shall be provided reasonable staff support.

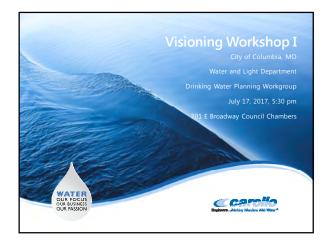
ADOPTED this 3rd day of , 2017.

ATTEST:

Citv Clerk

R.G-

Mayor and Presiding Officer

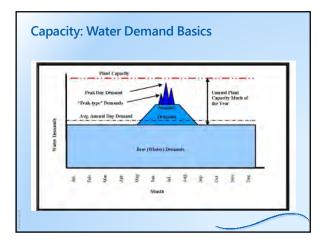

Only Olerik

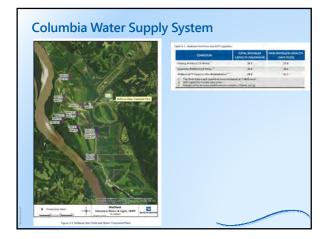
Counselor

APPROVED AS TO FORM:

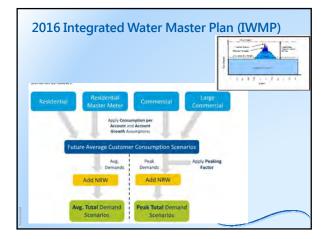
Appendix B KICKOFF WORKSHOP

Draft Mission Statement of Planning Workgroup

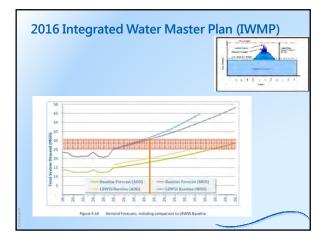

• "To enhance the quality of life for Columbia, Missouri Citizens by providing direction to Columbia Water and Light on the best means to continue its mission to provide at an affordable price; high-quality water and dependable service that exceed customer expectations; protects and ensures a long-term water supply for future generations; and serves as responsible stewards of public health, utility resources, and the environment."

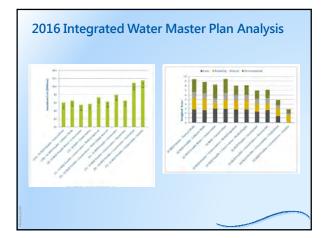

Challenges to Accomplishing Mission

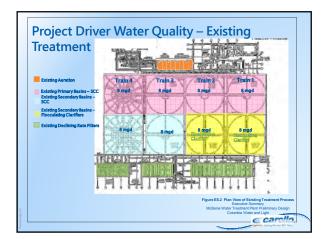
- Affordability: % of Median Household Income
- Capacity: Satisfy Future Water Demands
- Water Quality:
- Environmental Stewardship:

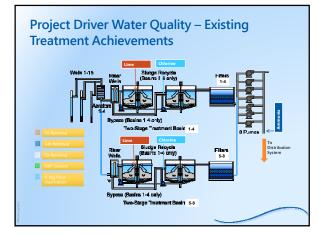

Capacity Studies

- 2007 Water System Study (Jacobs)
- 2007 Ground Water Flow in McBaine Bottoms (USGS)
- 2010 University of Missouri Columbia Report
- 2011 Preliminary Expansion Study (Carollo)
- 2012 Well Siting Study (Black and Veatch)
- 2015 Long Range Planning Study (Jacobs)
- 2016 Water Treatment Plant Condition Assessment (Black and Veatch)
- 2016 Integrated Water Supply Plan (Black and Veatch)
- 2017 Integrated Management Plan (HDR)

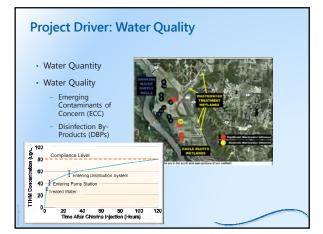


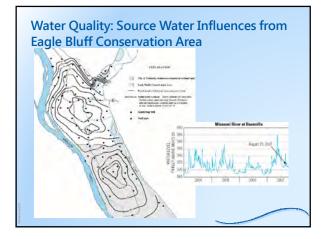





2016 Integrated Water Master Plan Recommendations

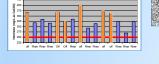
- Expand Existing Wellfield by 16 mgd
- Continued Use of Deep Wells For Non Potable Irrigation
- Continued Use of ASR wells
- Review Conservation Program and Expand Outreach
- No IPR or DPR
- No Non-Potable System (Stormwater reuse)

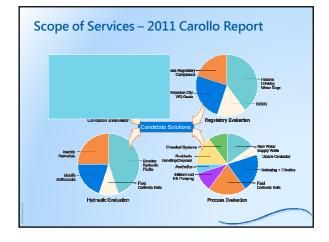




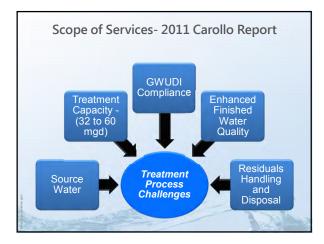
Water Quality Studies

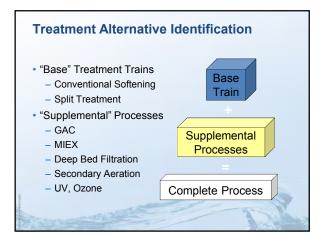
- 2007 Water System Study (Jacobs)
- 2007 Ground Water Flow in McBaine Bottoms (USGS)
- $\cdot\,$ 2010 University of Missouri Columbia Report
- 2011 Preliminary Expansion Study (Carollo)
- 2012 Well Siting Study (Black and Veatch)
- 2015 Long Range Planning Study (Jacobs)
- 2016 Water Treatment Plant Condition Assessment (Black and Veatch)
- 2016 Integrated Water Supply Plan (Black and Veatch)
- 2017 Integrated Management Plan (HDR)




Water Treatment Potential Issues- State Reclassification of Source

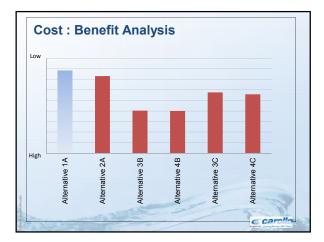
- Water Quantity
- Water Quality
- State Reclassification of Source as GWUDI

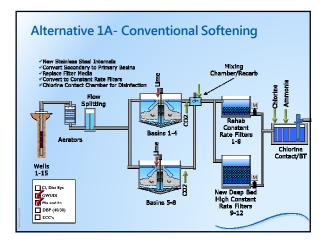




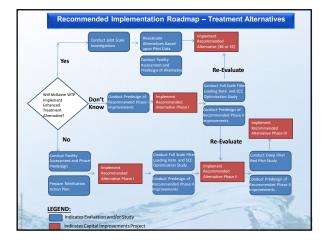
Scope of Services- 2011 Carollo Report

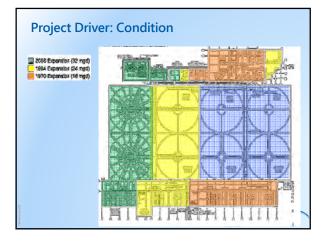
- Task 1 Project Inception
- Task 2 Data Collection and Analysis
- Task 3 Regulatory Evaluation
- Task 4 Process Evaluation
- Task 5 Hydraulic Evaluation
- Task 6 Develop Alternatives
- Task 7 Analysis and Recommendations





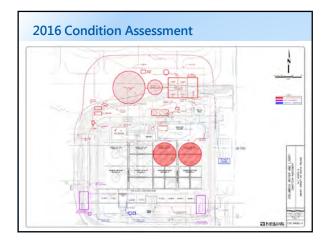
Water Quality Studies


- 2007 Water System Study (Jacobs)
- 2007 Ground Water Flow in McBaine Bottoms (USGS)
- 2010 University of Missouri Columbia Report
- 2011 Preliminary Expansion Study (Carollo)
- 2012 Well Siting Study (Black and Veatch)
- 2015 Long Range Planning Study (Jacobs)
- 2016 Water Treatment Plant Condition Assessment (Black and Veatch)
- 2016 Integrated Water Supply Plan (Black and Veatch)
- 2017 Integrated Management Plan (HDR)



Treatment Recommendation Summary

- Implement Alternative 1A.
- Do Not consider treatment for CEC's.
- Continue use of chloramines & develop formal nitrification action plan.
- Conduct condition assessment of McBaine WTP and include in budgetary cost.
- Master Plan facilities for GWUDI Compliance.
- Plan for phased implementation of Alternative 1A. Accelerate if GWUDI compliance is necessary.



Water Quality Studies

- 2007 Water System Study (Jacobs)
- 2007 Ground Water Flow in McBaine Bottoms (USGS)
- 2010 University of Missouri Columbia Report
- 2011 Preliminary Expansion Study (Carollo)
- 2012 Well Siting Study (Black and Veatch)
- 2015 Long Range Planning Study (Jacobs)
- 2016 Water Treatment Plant Condition Assessment (Black and Veatch)
- 2016 Integrated Water Supply Plan (Black and Veatch)
- 2017 Integrated Management Plan (HDR)

2016 Condition Assessment

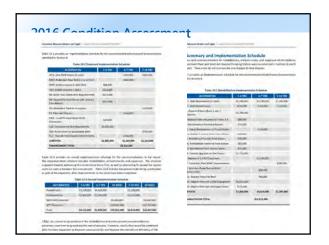
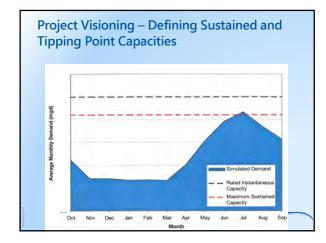
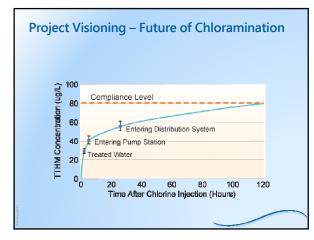

- New Water Demand/Capacity Results 2015 LRWSS eliminate need for 65 mgd.
- Capacity Downgraded from 32 to 24 mgd.
- Growth of wintertime demands may not permit Expansion within Basins when needed.
- Water Quality Considerations:
 - Continue existing treatment process goals
 - Locate Wells to avoid State Classification of Water as GWUDI

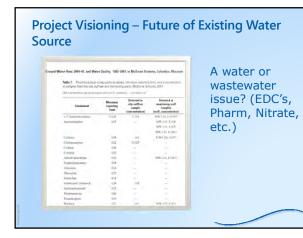


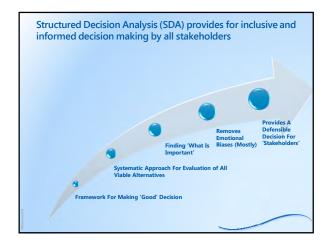
Table 9-3 Costs for Equansion Alternatives (in \$1,000x of Dollars)								
ALTERNATIVE	Diministry.	DIFES?	INPASS 1	007603	10021002	001601	GW006-1	GMIDEL2
	41 hears	Ann Desce	Single Single	distant.	2 Annual	Single Prope	Al Mr. Same	00 40 her
Water Sapply	-	-	-		-	-	-	
Wets	21.640	\$3,640	\$3,646	-57,280	\$7.280	37,290	57,380	\$7,280
Ras Mater Prove	\$2,720	\$2,729	\$2,725	51,112	58.912	31.112	\$1,312	\$3.812
Water Supply Construction Tetal	\$6.360	54,360	\$6,360	\$30,510	\$34.592	\$10,5%	\$10,592	\$10,812
Treatment Plant Expansion								
Géneral Repursients	21045	\$1,285	SI,854	-\$6,062	\$6,220	-\$2,421	56.538	-\$0.000
Site Structures/Site Piping	\$1.421	\$3,016	55,418	\$4.224	\$4.115	58.491	54.971	54.883
Annatore -	ants .	Sact.	-	\$1,640	\$1,984	11,000	lis,and	-11.000
Bases.	\$2,925	54246	\$2,287	\$5,852	57,530	35,164	53,852	\$7,530
Real of the second seco	SATHE	-O,th	68,151	\$17.318	\$26,495	\$54,990	\$27,814	\$27,839
Counsels/franke Pumping).	\$5,825	\$4,253	52,648	\$2,799	\$2,508	15.614	53,852	SERN
Contact leases	54	50	52,099	\$0	30	SLAND	34	52-
High Service Formpring	\$2,271	\$2,219	\$2,271	\$4.545	54,418	\$4,458	\$7.326	\$7.276
Chemical Freid Systems	\$1.768	\$1.668	\$2,315	\$5,862	56,678	34.765	55.912	36,678
Electrical and instrumentation	45.138	\$3,408	\$5,375	\$7,962	36.135	\$8.728	SALING	\$4.125
Treistment Mani Subtotal	\$27,858	\$29,771	\$35,721	556,287	\$\$7,628	871,058	SKL108	\$64,641
Construction Tatal	\$95,723	\$35,511	\$42,081	146,875	566,430	\$41.650	\$71,705	\$75,281
I some blimitation	\$4,267	35.429	56.113	\$30.000	610.261	\$17.748	\$18,765	SUM
PROMICE FORAL	\$14,770	\$41,881	548,398	\$76,813	\$79,643	SHLSH.	582,456	\$86,5.2

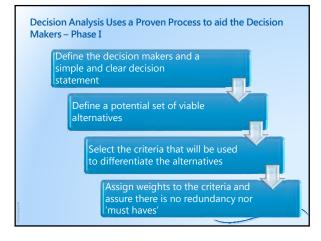


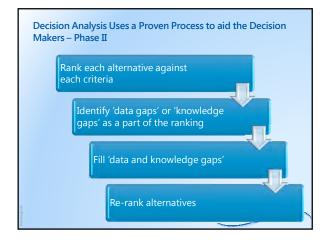

- Establishes the boundaries of the Project.
- Establishes the stakeholders for the project.
- Establishes the mission statement for the project.

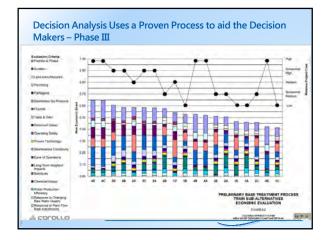












Discuss/Review Contents of Visioning Questionnaire

- Plant Capacity
- Potential Alternate Plant Site Locations
- Chloramination Future
- Microcontaminant Removal Future
- Facilities That Are Not to be Retained
- · Limitation of existing facility
- Budget/Schedule Constraints
- Others?

							CEIPOREI					
Description	Start Date	Cad Date	Prim •	Seco ndar Y	May 2017	June 2017	duly 2017	Aug 2017	54p 2017	Get 2017	Nov 2017	22
DICLIVERADLE: Distribute Draft Venaming Chamber status in standees	May 210, 2017	June 10, 2017	¢									
ACTION Konservations and her prepared to reason and	man.	N8%	-	42								
WORKSHOP: Valening I	June 12, 2017	June 10, 2017	c	м		*						
DELEVERADE: SOOM I MA	.3000 10. 2017	2017	e.	*								
WEROOOD Verseng Werkshop	-1-dy 10. 2017	2009y 10. 2021/					*					
ID-I P/-CAND - Three top California Matrix	-holy 10. 2011/	368y 361 290.17	G.	*								
WORKSHOP, Orlicital Development and Harring	Aug 14, 36.17	Aug 14, 2617	c	м				•				
DELIVERABLE: Summery TM (Deall) of Treadment Albertabree.	Aug 14, 2017	Cept 1 2017	c	м								
WORKSHOP: Hevew seminary Inc.	5-495 11, 29 17	54695 11. 2017	м	e.					*			
La Live Roca Li Colantinary 200 Devine 174	Swept 11, Stort /	523 5. 29917										
WORKSHOP: Treasurent Alternative New young I	Oct 0. States	Oct 0. Det 0.	٠	м						*		
Ibel Melalati e Berararet I M. and Rankinga	0-1 9. 2017	6164 20. 20.	**	м								
WERECORD 1. Londowed Allermations Deserving II	New 12. 25.17	50mm 12- 2017									*	
Denselop Clear Thi Including Clear Sharmony	10000 103 2010 /	11 31 311/2	·	м								
WORKSHOP: Final Atematives Revenues and Refer to a Washington	TOO	700	<	м								

Appendix C SUMMARY OF VISIONING QUESTIONNAIRE AND RESULTS

VISIONING QUESTIONNAIRE

PART I - PURPOSE AND INSTRUCTIONS

The purpose of this questionnaire is to establish a vision and identify the boundaries for the Drinking Water Planning Group to assist in the update of the 2011 Water Treatment Plant Preliminary Design Report. As someone who has been identified by the Columbia Water and Light Department as a stakeholder in this process, your input is of value and will result in a more thorough and comprehensive update. Please feel free to attach any additional information to this form. **Please only answer questions in areas that you are familiar with or have knowledge about.**

Any questions regarding this form should be addressed to **Thomas Crowley at tcrowley@carollo.com**.

We will collect and Review this information as part of our Visioning and Kickoff Workshop II to be Conducted On **August 14, 2017.**

PART II – RESPONDENT INFORMATION

1. Please provide the information below regarding the respondent:

Name:

Title:

Occupation:

Phone:

Fax:

Date:

2. Please provide a brief description of your goals for the project.

PART III - QUESTIONNNAIRE

Water Treatment Plant Configuration:

1. To reduce anticipated operational expenses, should the current treatment goals to soften the water be abandoned in favor of less expensive treatment measures? (This may cause some consumers to install in-home water softeners)

Continue Softening Treatment Goals

Discontinue Softening Treatment Goals

Please list the reasons for your selection:

2. The secondary regulations concern the aesthetic aspects of a drinking water supply rather than the health aspects. Should any new treatment processes consider satisfying the current secondary regulations (suggested limits) as well as the primary regulations (required by law)? Satisfying the secondary regulations is currently done at the existing facilities.

Continue Satisfying Secondary Suggested Limits for Aesthetic Properties

Discontinue Satisfying Secondary Suggested Limits for Aesthetic Properties

Please list the reasons for your selection:

3. Should the study examine abandoning and demolishing the existing water treatment plant (32 mgd) and constructing an entirely new facility with source water obtained from a different location at a significant cost to current and future customers?

Existing Supply and Treatment Plant Should be abandoned

Continue Use of Current Source and Treatment Facility

Please list the reasons for your selection:

4. The end of this questionnaire provides a glossary of the advanced treatment technology and the potential benefits this technology would provide. Please select which of these advanced technologies you would like to see the study address. Please list the reasons for your selections.

Membrane Filtration	Air Stripping
Nano/Reverse Osmosis	Enhanced Softening
Advanced Oxidation	All of the Above
Ion Exchange	Others (Please List Below)
Advanced Disinfection	
Ozone/Infiltration	
Advanced Biofiltration	

Please list the reasons for your selection:

5. To satisfy regulations associated with disinfection by products, the City of Columbia converted from free chlorine to chloramines in the distribution system and conducts periodic conversions to chlorine to avoid issues that are associated with nitrification. There are more costly technologies that can be employed to satisfy all disinfection by product regulations <u>and</u> permit switching back to chlorine. Given this, how important is it to you that the City of Columbia switches back to the exclusive use of free chlorine in the distribution system? Please state the reasons for your selection:

	Absolutely Critical to Switch Back to Chlorine
	Very Important to Switch Back to Chlorine
	Not Very Important
	Stay with Chloramines
	Other (Please list)
In the	snace allotted below please state your reasons for the sele

In the space allotted below please state your reasons for the selection made above:

6. Past investigations of surface water and groundwater sources in Missouri and throughout the country have detected the presence of extremely low levels (one drop in 20 Olympic swimming pools) of Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc.) compounds in many drinking water supplies. Studies to determine if long-term exposure to the low concentrations of these constituents impact human health are at least 10+ years away and it is not certain when (if at all) some or all of these constituents will be regulated. Technologies that remove or destroy these compounds from the supply are available but are significantly more costly to implement than the current treatment process. Given this, how important is it to you that this study considers processes that remove or destroy these compounds? Please state the reasons for your selection.

Absolutely Critical to Remove or Destroy these Compounds No Matter the Expense.

Study Should Evaluate the Costs/Benefits of Technologies that Remove or Destroy these Compounds.

Not Very Important that Study Considers Removal/Destruction of these Compounds.

Study **Should Not** Consider Removal/Destruction of these Compounds.

Other (Please list)

In the space allotted below please state your reasons for the selection made above:

7. Green elements at a water facility are elements that minimize chemical use and maximize energy efficiency. Should a "green" element be a consideration for ranking and analysis of treatment alternatives?

Yes
No
Other (Please List)

In the space allotted below please list the reasons for your response:

8. Are there any other issues regarding treatment that should be addressed?

Yes (please list)
No

In the space allotted below please list the reasons for your response:

City of Columbia, MO WTP Visioning Questionnaire

PART IV GLOSSARY OF WATER TREATMENT TECHNOLOGIES

Advanced Biofiltration:	Technologies that utilize an exterior carbon source and other nutrients in lieu of Ozone to establish and maintain a biofiltration process (a filter bed laden with microorganisms that break down organic matter into carbon dioxide, water and salts). These processes have proven effective in reducing the extremely low levels (one drop in 20 Olympic swimming pools) of some Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc.) compounds found in many of the nations drinking water supplies. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as a secondary (distribution) system disinfectant.
Advanced Disinfection:	Technologies (Ozone, chlorine dioxide, UV, low pressure membrane filtration) that are approved by the US EPA to provide primary disinfection of drinking water that meet or exceed national standards without the use of free chlorine. This does not eliminate the use of chlorination in the process. Chlorination or Chloramination will be required by the Missouri Department of Natural resources following this process to produce a measurable residual disinfectant in the distribution system. Some of these technologies may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as a secondary (distribution) system disinfectant.
Advanced Oxidation:	The process of adding or generating powerful oxidants to oxidize trace levels of organic or microbiological organisms in water. These processes have proven effective in reducing the extremely low levels (one drop in 20 Olympic swimming pools) of some Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc.) compounds found in many of the nations drinking water supplies.
Air Stripping:	Technologies involving the transferring of volatile components of a liquid into an air stream. Some of the disinfection by-products generated from drinking water chlorination can be safely removed from drinking water through this process. This treatment may provide enhanced removal of disinfection by products and may permit the re-establishment of free chlorine as a secondary (distribution) system disinfectant.
Enhanced Softening:	The process of adding an excess of alkaline agent (lime, caustic soda, etc.) to water to remove hardness (calcium and magnesium ions) via precipitation. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as both a primary and secondary (distribution) system disinfectant.

PART IV GLOSSARY OF WATER TREATMENT TECHNOLOGIES (CONT.)


Ion Exchange:	A reversible chemical reaction between an insoluble solid and a solution during which ions may be interchanged. This separation process, as it applies to Columbia, would be to examine fixed bed or dispersed magnetic resins to fix some organic ions to the resins. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as both a primary and secondary (distribution) system disinfectant.
Ozone/Biofiltration:	A combined water treatment process to reduce natural organic matter (NOM) which is a water disinfectant byproduct precursor. Water is first assonated (ozone is mixed into the water flow to oxidize organic matter, iron and manganese) and then passed through a biofilter (a filter bed laden with microorganisms that break down organic matter into carbon dioxide, water and salts). These processes have proven effective in reducing the extremely low levels (one drop in 20 Olympic swimming pools) of some Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc.) compounds found in many of the nations drinking water supplies. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as a secondary (distribution) system disinfectant.
Micro/Ultra Filtration:	Water under moderate pressure (25-50 psig) is forced through a membrane, a thin material with very small pores, stopping small particles (including bacteria). This is proven to provide an effective barrier to most pathogens but is not effective in removing ions (softening) or most organic compounds.
Nano/Reverse Osmosis:	Water under high pressure (75-120 psig) is forced through a membrane using a separation process that employs the principles of reverse osmosis to remove dissolved contaminants from water; typically applied for membrane softening or the removal of dissolved organic contaminants. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as both a primary and secondary (distribution) system disinfectant. In addition, these processes have proven effective in reducing the extremely low levels (one drop in 20 Olympic swimming pools) of some Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc.) compounds found in many of the nations drinking water supplies.

PART IV GLOSSARY OF WATER TREATMENT TECHNOLOGIES (CONT.)

Softening (precipitative):	The process of adding an alkaline agent (lime, caustic soda, etc.) to water to remove hardness (calcium) via precipitation. This is done to reduce scaling in water heaters and otherwise improve other aesthetic aspects of drinking water.
Ion Exchange:	A reversible chemical reaction between an insoluble solid and a solution during which ions may be interchanged. This separation process, as it applies to Columbia, would be to examine fixed bed or dispersed magnetic resins to fix some organic ions to the resins. This treatment may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as both a primary and secondary (distribution) system disinfectant.

Appendix D SUMMARY OF VISIONING WORKSHOPS

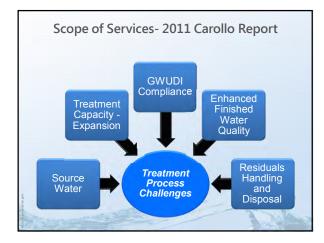
Workshop Agenda

- Review of Questionnaire
- Treatment Technologies Overview
- Primary and Secondary Drinking Water Regulations
- Softening Presentation
- CEC Presentation
- Disinfection By Products Presentation
- Treatment Technologies Overview
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members, and Staff
- Next Meeting Date

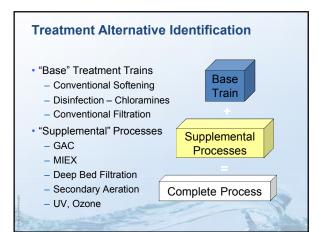
Draft Mission Statement of Planning Workgroup

• "To enhance the quality of life for Columbia, Missouri Citizens by providing direction to Columbia Water and Light on the best means to continue its mission to provide at an affordable price; high-quality water and dependable service that exceeds customer expectations; protects and ensures a long-term water supply for future generations; and serves as responsible stewards of public health, utility resources, and the environment."

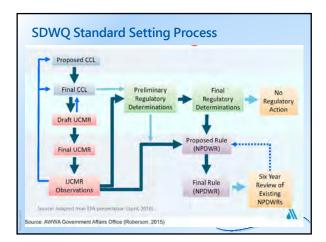
Review of Questionnaire - Purpose


MISIONING-QUESTIONNAIRE

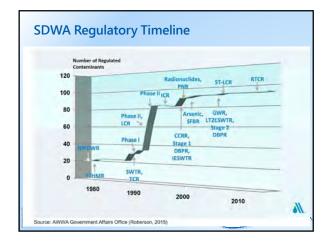
VISIONING-QUESTIONNAIRES PARTI--PURPOSE-AND-INSTRUCTIONST The purpose of this questionnaire is to establish a vision and identify the boundaries for the Water Treatment Plant Preliminary Design Report project. As someone who has been identified by the Columbia Water and Light Department as wisheholder in this process, your input is of value and will result in a more thorough and comprehensive study...Places feel free to attach any additional information to this form...Please-only-answer-questions-in-areas that you are-familiar-with-or-have-knowledge-about.


			view of Questionnaire-
90.00			<u>e Water-Supply</u> Are you satisfied with the quality of the existing water supply source? 1 Yes¶ 1 Nof1 1 Other (Please-List) 1
Rename	2.	•	Should this study consider other sources of supply? If so, which sources and why?

Primary Drinking Water Regulations


- What are primary Drinking water regulations and how do they vary based upon source water classification?
- What are Secondary Drinking Water Regulations?

Primary Drinking Water Standards


- The National Primary Drinking Water Regulations (NPDWR) are legally enforceable primary standards and treatment techniques that apply to public water systems. Primary standards and treatment techniques protect public health by limiting the levels of contaminants in drinking water.
- These levels are based on consideration of health risks, technical feasibility of treatment, and cost-benefit analysis. (MCLs) which are established to protect the public against consumption of drinking water contaminants that present a risk to human health. An MCL is the maximum allowable amount of a contaminant in drinking water which is delivered to the consumer.

Primary Drinking Water Standards – EPA Regulatory Framework

- Under the Safe Drinking Water Act, promulgated in 1974, the USEPA has established drinking water regulations for more than 90 contaminants
- 1986 amendments:
 - Required that EPA review existing regulations every six years, termed the "Six year Review" process
 - Established the Contaminant Candidate List (CCL) process for identifying new contaminants for regulatory determination every five years

	Year Published	Contaminants Included	Regulatory Determinations
CCL1	1998	10 microbial 50 chemical	 Not to regulate 8 chemicals (incl, manganese) and 1 microorganism (Acanthamoeba)
CCL2	2005	 9 microbial 42 chemical 	 Not to regulate 11 chemicals; More information needed on perchlorate
CCL3	2009	 12 microbial 104 chemicals 	 Preliminary determination to regulate strontium Not to regulate 4 chemicals

-

Primary Drinking Water Regulations

- What are primary Drinking water regulations and how do they vary based upon source water classification?
- What are Secondary Drinking Water Regulations?

Difference Between GWUDI and GW Boils Down to Three Major Parameters

- Turbidity Removal
- Disinfection By Product Precursor Removal
- Disinfection

Table: March Spring Information	+	
King langu of Hag introducion		
Oversty, fail warries, phills, lectrics one y		
Contactor of Lad Charlowsee.		
Smalls Les Residual		
Montried Tothering Song Tilton Reaction 75	145	
A STOCKED AND A	1.81	
Weren Landersteit		
Mergener & her regiment prefit		
Sanator or Institution California.		
Damas, you AST Discharge same Transast Special		
Sul Open Cales (200 8 Allulary Macaveneti		
OC Dy Synator Ealer		
hanner u Piler Terleranse izr 3a Meak (fi bi se \$5 1971 - S. M.R., Kus, P. Ig Jernig, Briskley Merrice Piele Telscieg 195 Ecsley Miles		
Same will find on a Robert in garant five condition. Good-Technology, Walter to set		1.00
Assisted Decelorate Convergences (Dec. Confere Reschart, See Reddad Declaring)		
Summary of Dirichmone Forum Scophy - Under work-		
General Pare London in South R. Hour of Para Oversee, New York, Parence Gene Lance & Paramete Canadre Delevatio Verset		
Dealed Ditaktory Great The Ditaketer.		
Renation Renative Manaka and Exercici		
Buedtreise Mediting Foreik		
Tool Coldina Deposited Lawrences		

Primary Drinking Water Regulations

- What are primary Drinking water regulations and how do they vary based upon source water classification?
- What are Secondary Drinking Water Regulations?

Notable Regulations – Safe Drinking Water Act

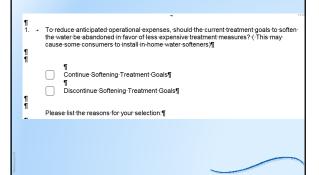
- EPA has established National Secondary Drinking Water Regulations (NSDWRs) that set non-mandatory water quality standards for 15 contaminants. EPA does not enforce these "secondary maximum contaminant levels" (SMCLs). They are established as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL.
- While SMCLs are not federally enforceable, EPA requires a special notice for exceedance of the fluoride SMCL of 2.0 mg/L. Community water systems that exceed the fluoride SMCL of 2 mg/L, but do not exceed the MCL of 4.0 mg/L for fluoride, must provide public notice to persons served no later than 12 months from the day the water system learns of the exceedance (40 CFR 141.208).

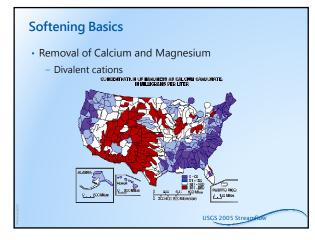
Secondary Standard Philosophy

- These problems can be grouped into three categories:
 - Aesthetic effects undesirable tastes or odors;
 - Cosmetic effects effects which do not damage the body but are still undesirable
 - Technical effects damage to water equipment or reduced effectiveness of treatment for other contaminants

Contaminant	Secondary MCL	Noticeable Effects above the Secondary MCL
Aluminum	0.05 to 0.2 mg/L <u>*</u>	colored water
Chloride	250 mg/L	salty taste
Color	15 color units	visible tint
Copper	1.0 mg/L	metallic taste; blue-green staining
Corrosivity	Non-corrosive	metallic taste; corroded pipes/ fixtures staining
Fluoride	2.0 mg/L	tooth discoloration
Foaming agents	0.5 mg/L	frothy, cloudy; bitter taste; odor
Iron	0.3 mg/L	rusty color; sediment; metallic tast reddish or orange staining
Manganese	0.05 mg/L	black to brown color; black stainin bitter metallic taste
Odor	3 TON (threshold odor number)	"rotten-egg", musty or chemical smell
рН	6.5 - 8.5	low pH: bitter metallic taste; corrosion high pH: slippery feel; soda taste; deposits
Silver	0.1 mg/L	skin discoloration; graying of the white part of the eye
Sulfate	250 mg/L	salty taste
Total Dissolved Solids (TDS)	500 mg/L	hardness; deposits; colored water; staining; salty taste
Zinc	5 mg/l	metallic taste

Continue Secondary Standards

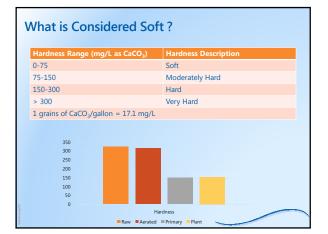

- The secondary-regulations concern the assibility aspects of a drinking water supply ration than the health aspects. Should any new treatment processes consider satisfying the current secondary regulations (suggested firms) as well as the primary regulations) (required by low)? Satisfying the secondary regulations is currently done at the existing facilities."] 2. 1 1
 - Continue Satisfying Secondary Suggested Limits for Aesthelic Properties
 - I
 Discontinue Satisfying Secondary Suggested -Limits for Assthetic Properties


11 11 Please-list the reasons for your selection: (

۲

Softening in Visioning Workshop

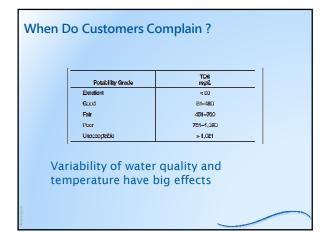
Why Remove Hardness ?

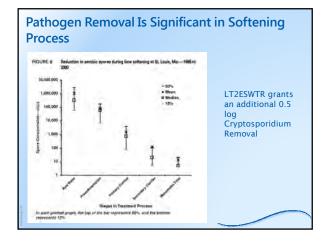

Aesthetics

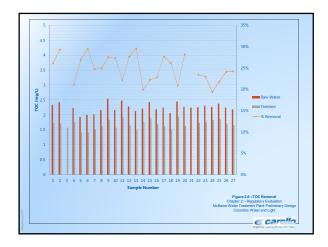
- American Institute of Laundering
 - Costs are 2X for hard versus soft
- Synthetic detergents
 - Better than fatty acids (basic) Builders - consumed by hard water
- Purdue University
 - Fabrics wear out 15% guicker
 - Colors fade
 - Whites darken
- Reduced equipment life
 - 30% reduction washing machines
 - Hot water heaters

Water Hardness is a Balance for Hot Water Heaters

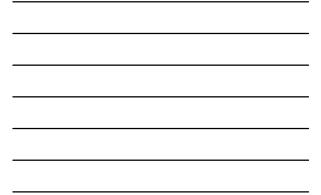
- Low hardness Corrosion
 Soft water 2x or 3X anode consumption
- Hard water Calcium carbonate build up
 - Slows heat transfer overheating of tank bottom
 - Over temperature dissolved glass
 - Insulates tank from anode

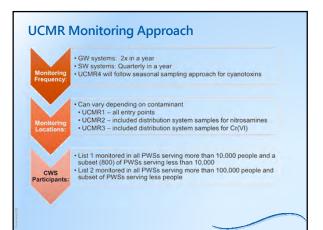


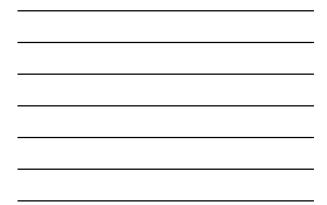












Contaminant Candidate List Process Draft CCL4 – February 14, 2015

- Remainders from CCL3, minus
 - Positives for perchlorate (2011) and strontium (preliminary 2014)
 - Four negative preliminary determinations in 2014
- 110 chemical contaminants, including
 - Cyanotoxins
 - Manganese
- 12 microbial contaminants

Contaminant	Sampling Point(s)	Method
Cyanotoxins: total microcystin & 5 congeners, anatoxin-a, cylindrospermopsin, nodularin	Entry point	EPA 546, EPA 544 and 545
Germanium	Entry point	EPA 200.8,
Manganese	Entry point	SM 3125
8 pesticides	Entry point	EPA 525.3
3 alcohols	Entry point	EPA 541
3 other semivolatile compounds	Entry point	EPA 530
3 brominated DBPs ¹ & indicator compounds ²	Distribution system	EPA 552.3 or 557

13

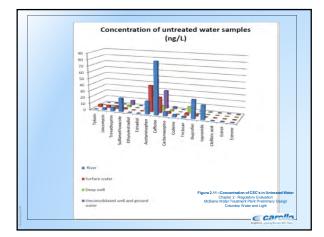
3rd Six Year Review Identified 8 NPDWRs for Regulatory Revision

- Stage 1 and 2 D/DBPR (TTHM, HAA5, Chlorite)
- Cryptosporidium
- Heterotrophic Bacteria
- Giardia lamblia
- Legionella
- Viruses

https://www.epa.gov/dwsixyearreview/six-year-review-3-drinkingwater-standards

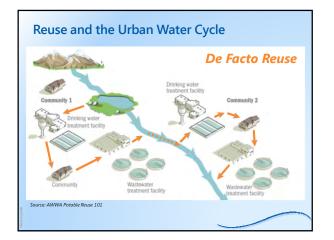
Executive Order 13771 and 13777 on Reducing Regulatory Burden

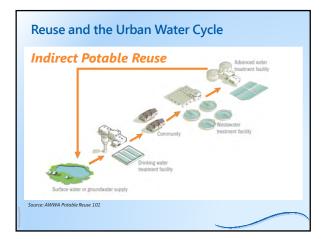
- January 30, 2017 EO 13771 Reducing Regulation and Controlling Regulatory Costs
 - Any new regulation must be coupled with two deregulations
- February 24, 2017 EO 13777
 - Within 60 days of order, agencies must designate Regulatory Reform Officers to oversee regulatory reform initiatives, including compliance with EO 13771


https://www.whitehouse.gov/the-press-office/2017/02/24/presidentialexecutive-order-enforcing-regulatory-reform-agenda

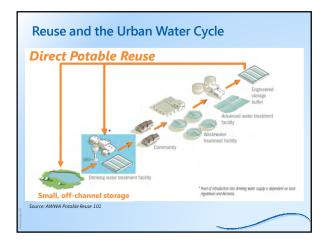
Contaminant	Regulatory Framework	Probability
Perchlorate	2011 decision to regulate; NRDC settlement	Likely
Lead	Proposed Long Term-LCR rule expected 2017	Likely
Cyanotoxins	2015 health advisories (HA); UCMR4; CCL4	Likely
Strontium	2014 preliminary decision to regulate	Likely
Chlorate	3rd Six Year Review; Pesticide Office	Possible
NDMA	3rd Six Year Review	Possible
Cr(VI)	UCMR3; CCL4	Possible
1,4-dioxane	UCMR3; CCL4	Maybe
Perfluorocompounds	2016 revised HA; UCMR3; CCL4	Maybe
Brominated DBPs	UCMR4; 3rd Six Year Review	Maybe
Manganese	UCMR4; CCL4	Maybe

N	A			
Nater Flow, 2004-07, and Wa	er Quality, 1992-2	007, in McBaine Bo	tions, Columbia, Mitaouri	Snapshot in
Table 7. Pharmaceutical				
in samples from the city of			ttoma, 2007	time.
All micentrations for it mice	gran per litter, E. com	mint art detected j		
Constituent	Minumum reporting limit	Detected in city outflow sample (concentration)	Detected in monitoring well samples (well, concentration)	Extent and
1,7-15methylicenthine	0.034	0.118	MW-1.99. T007007	Excerne and
Accommophen	.015		MW-116, 8000	types are
			MW-130, 11005	
			MW-139, 40000	unknown.
Calleine	301.8	144	MW4-20, E007	unknown.
Cohenavegene	-025	E.023		
Codesne	.028	-	-	
Cutimine	022			
Dehydronikeshpins	X12.8	-	MW-116, E.0005-	
Dephenhydronum	.018		-	
Deltsanem	.010			
Flucentine	.025			
Ramidine	201-4			
Substanoi (albaterol)	()(24	-10.9		
Sultamethoxazole	1025	-		
Thisbendazole	020	-	-	
Transitiopam	201-9			
Wardano	0.51	010	MW-110, E-007	




Visioning – CEC Treatment

- A past-investigations of surface water and groundwater sources in Missouri and throughout the country have detected the presence of extremely low levels (one drop in 20 Olympic swimming pools) of Endocrine Disrupting (estrogen, etc.) and Pharmaceutical (acetaminophen, etc.) compounds in many drinking water supplies. Studies to determine if long-term exposure to the low concentrations of these constituents impact human health are at least 10+ years away and it is not certain when (if at all) some or all of these constituents will be regulated. Technologies that remove or destroy these compounds: from the supply are available but are significantly more costly to implement than the current treatment process. Given this, how important is to you that this study considers processes that remove or destroy these compounds? Please state the reasons for your salection.] ſ Absolutely-Critical to Remove or Destroy-these-Compounds-No-Matter the Expense.¶ Expense 11 Study Should Evaluate the Costs/Benefits of Technologies that Remove or Destroy these Compounds.1


 - 1 Not.Very.Important.that.Study.Considers.Removal/Destruction.of.these. Compounds.1 \Box
 - Study Should-Not Consider Removal/Destruction of these Compounds. ¶ Other (Please list)___ __1
 - II In the space allotted below please state your reasons for the selection made above.

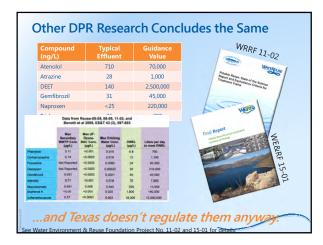
g preference	EPA MCL WHO DWC State MCL State provisional level {e.g. NL
of decreasing	De minimis concentration? (HA or PNEC) De minimis dose? (RfD, ADD, etc.)
Order of	De minimis dose? (RfD, ADD, etc.) Medical Benchmark? (MTD, MRTD, etc.) De minimis benchmark from secondary
Goridi suos	De minimis benchmark from secondary

Contan	ninant of Emerging Concern	Public Health Criterion	Secondary Effluent Concentratio
N-nitre	osodimethylamine (NDMA)	10 ng/L	Varies
Perfi	luorooctanoic acid (PFOS)	200 ng/L*	Not Measured
ng/L	Estrone (E1)	320 ng/L	14 ng/L
IB/L	17β-estradiol (E2)	N/A	< 5 ng/L
17a-ethinylestradiol (EE2)		N/A	< 5 ng/L
Perfl	uorooctanoic acid (PFOA)	400 ng/L*	Not Measured
	1.4-dioxane	1 µg/L	Not Measured
	Cotinine	1 µg/L	0.049 µg/L
	Phenytoin (Dilantin)	2 µg/L	0.210 µg/L
ug/L	Atenolol	4 µg/L	0.450 µg/L
ug/L	TCEP	5 µg/L	0.110 µg/L
	Carbamazepine	10 µg/L	0.320 µg/L
	Primidone	10 µg/L	0.440 µg/L
	DEET	200 µg/L	0.046 µg/L
	Meprobamate	200 µg/L	0.190 µg/L

Indicator TOrCs

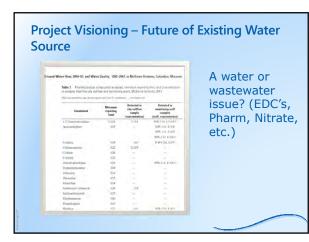
- Frequent Occurrence at 'High' Concentrations (relative to detection limits)
- Availability and Reliability of Analytical Methods (LC-MS/MS → expensive!)
- · Performance validation
 - Biotransformation → Activated Sludge, Biofiltration, Environmental Buffer
 High = Caffeine, Naproxen, Ibuprofen
 - Low = Carbamazepine, Meprobamate, Sucratose
 - Adsorption → Activated Sludge, Granular Activated Carbon, Environmental Buffer
 High = Triclosan, Triclocarban, Bisphenol A
 - Low Caffeine, Meprobamate, Sucralose
 - Oxidation \rightarrow Chlorine, Ozone, Hydroxyl Radicals
 - High = Carbamazepine, Triclosan, Bisphenol A
 - Low TCEP, Meprobamate, Sucralose
 - Photolysis ⇒ UV, Environmental Baffer
 High = Diclofenac, Triclosan, NDMA
 - Low = Primidone, Meprobamate, Sucralose
 - Wastewater influence
 - Primidone, Meprobamate, Sucralose

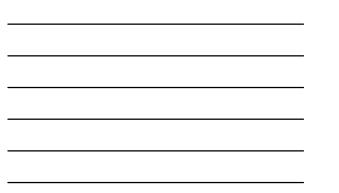
UNIV

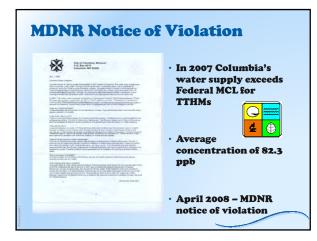


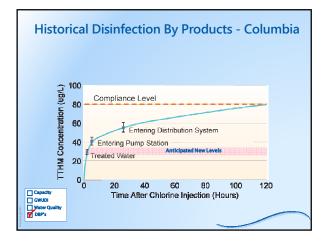
Pharmaceuticals Make Good Headlines...

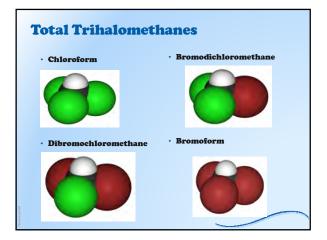
Ţ	Table 4.1 Health-Based Criteria and Measured Concentrations					
	hemical	Health Criterion	WWTP Effluent	DPR Product Water		
In Big Spring, 🗖						
we found						
	Carbamazepine	10 µg/L	<0.01 µg/L	<0.0005 µg/L		
Anti-anxiety drug	Estrone	320 ng/L	<0.2 ng/L	<0.2 ng/L		
	Meprobamate	200 µg/L	0.23 µg/L	0.00045 µg/L		
Blood pressure med!	Atenolol	4 µg/L	0.33 µg/L	<0.001 µg/L		
	Primidone	10 µg/L	0.19 µg/L	<0.0005 µg/L		
Anti-convulsant!	PFOA	70 ng/L ⁴	12 ng/L	< 5 ng/L		
1	PFOS	70 ng/L ⁴	5.4 ng/L	< 1 ng/L		
Insect repellant!	1,4-dioxane	1 µg/L	0.36 µg/L ⁵	<0.07 µg/L ⁵		
Anti-microbial!	DEET	200 µg/L	0.19 µg/L	0.15 µg/L		
Anti-microbial	Inclosan	2.1 mg/L	0.0018 µg/L	< 0.01 µg/L		
and more!	Sucralose ⁶	150 mg/L	0.041 mg/L	0.000150 mg/L		
anu more!	TCEP	5 µg/L	2.1 µg/L	< 0.01 µg/L		

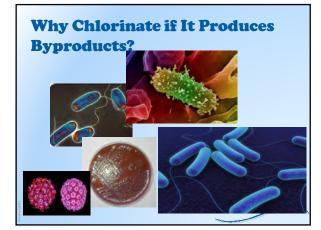

	Table 4.1 Health-Based Criteria and Measured Conc		
Chemical	Health Criterion	WWTP Effluent	DPR Product Water
Carbamazepine	10 µg/L	<0.01 µg/L	<0.0005 µg/L
Estrone	320 ng/L	<0.2 ng/L	<0.2 ng/L
Meprobamate	200 µg/L	0.23 µg/L	0.00045 µg/L
Atenolol	4 µg/L	0.33 µg/L	<0.001 µg/L
Prinudone	10 µg/L	0.19 µg/L	<0.0005 µg/L
PFOA.	70 ng/L4	12 ng/L	< 5 ng/L
PFOS	70 ng/L ⁴	5.4 ng/L	< 1 ng/L
1.4-dioxane	1 µg/L	0.36 µg/L ⁵	<0.07 µg/L ⁵
			0.15 µg/L
DEET	200 µg/L	0.19 µg/L	
DEET Triclosan	200 μg/L 2.1 mg/L	0.19 µg/L 0.0018 µg/l	< 0.01 µg/L
	10		

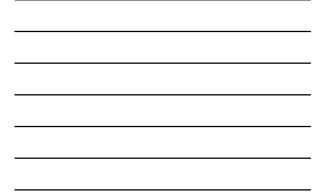


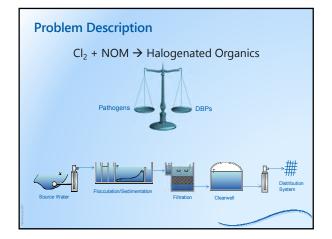

Project Visioning – Considering Treatment for CEC's Vater flow 2004-07, and Water Duality. 1997-2007 in McRaine Dottoms, Colombia, Max-A water or Table 7. Pharmaceutical compounds analyzed minimum reporting limit and in samples from the city outflow and monitoring werts, MCB and Bottoms, 2011 wastewater A.N. A.N. Detected in sity suffray secontrad VIV issue? (EDC's, Betected in immittening well samples well concentration Minimum reporting Tenit 0.024 015 Pharm, Nitrate, MW-115, E20 MW-120, E20 etc.) 142 E-025

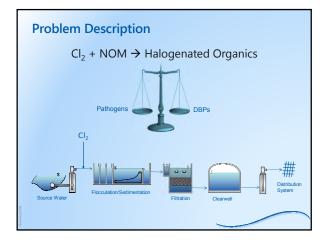


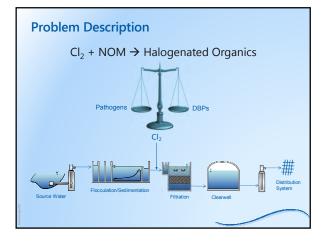












Why Chloramines? Chloramination vs. Chlorination

<u>Advantages</u>

Lower HAA and THM formation

More stable disinfectant

Disadvantages

Poorer disinfectant

May lead to nitrification in the distribution system

What are Chloramines?

HOCI + $NH_3 \leftrightarrow NH_2CI + H_2O$ (monochloramine)

 $HOCI + NH_2CI \leftrightarrow NHCI_2 + H_2O \text{ (dichloramine)}$

HOCI + NHCl₂ \leftrightarrow NCl₃ + H₂O (trichloramine)

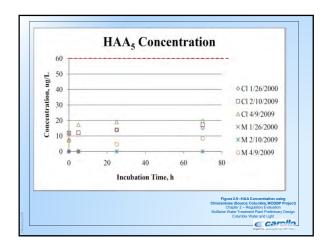
What are Chloramines?

 $HOCI + NH_3 \leftrightarrow NH_2CI + H_2O$ (monochloramine)

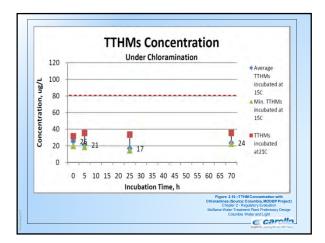
 $HOCI + NH_2CI \leftrightarrow NHCI_2 + H_2O \text{ (dichloramine)}$

 $\text{HOCI} + \text{NHCI}_2 \leftrightarrow \text{NCI}_3 + \text{H}_2\text{O} \text{ (trichloramine)}$

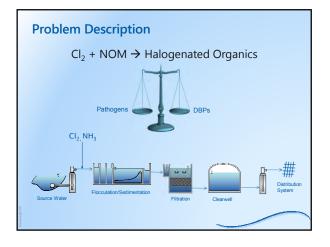
Chloramine chemistry is complicated, but we know a lot about it

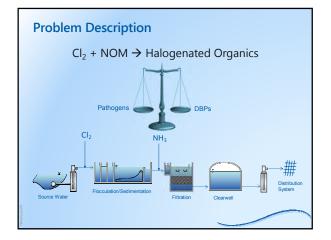

No.	Reaction	Rate or Equil- Driven Constant	Reference	No	Reaction.	Rate or Equi- ibrium Constant	Reference
Ľ	$\mathrm{HOCl} + \mathrm{NH}_3 \rightarrow \mathrm{NH}_3 \mathrm{Cl} + \mathrm{H}_2 \mathrm{O}$	$4.2 \times 10^6 \mathrm{M^4 s^3}$	Jafvest and Valentine (1992)	13	$\mathrm{HOC1} + \mathrm{Br}^{\prime} \rightarrow \mathrm{HOBr} + \mathrm{CT}$	$1.55 \pm 10^{1}\mathrm{M^{4}s^{4}}$	Kumar and Margaretta (1987)
2	NH-Cl + H-O NH_ + HOCl	2.1 x 10 3 4 1	Meeris and Isanc (1981)	16	HOBe + NH ₃ NH ₃ Br = H ₂ O	7.5 x 107 MI al	Wajon and Morris (1980)
1	NH-CI - HOCI NHCL-+ H-O	$2.8\times10^7\mathrm{M}^4\mathrm{s}^4$	Margarenns et al. (1978)	17	$OB_{f}^{-} + NH_{i} \rightarrow NH_{i}Br + OH^{-}$	$7.6 \times 10^8 { m M}^4 { m s}^3$	Wajon and Morras (1980)
4	NHCL = H-O HOCI + NH-CI	6.4 x 10 2 41	Margerom et al. (1978)	18	$NH_2Br + H_20 \rightarrow HOBr + NH_3$	1.5 s 10 ⁻¹ s ⁴	Hang and Lietzka (1980)
5	NH-CI + NH-CI -> NHCL + NH-	off dependent"	Vikesland et al. (2001)	- 19	$\mathbf{NH}_{2}\mathbf{Br} + \mathbf{NH}_{2}\mathbf{Br} \rightarrow \mathbf{NHBr}_{2} + \mathbf{NH}_{4}$	pH dependent	Lei et al. (2004)
6	NHCL = NH NH-CI + NH-CI	61x10'M's"	Hand and Margerup	20	$NHBr_2 = NH_2 \rightarrow NH_2 Br + NH_2 Br$	pit dependent	Lei et al. (2004)
			(1983)	21	$\mathrm{NH}_2\mathrm{Br} = \mathrm{NHB} t_2 \to \mathrm{N}_2 = 3\mathrm{H}^* \ 3\mathrm{Br}$	pH dependent"	Lei et al. (2004)
τ.	$\rm NH_2Cl = \rm NHCl_2 \rightarrow N_2 + 3H + 3Cl$	$1.5 \times 10^{7} {\rm M}^{3} {\rm s}^{1}$	Leso (1981)	22	$\rm NHBe_2 + \rm NHBe_2 + H_2O \rightarrow N_2$	$8.9~{\rm M}^3 {\rm s}^3$	Lei straf. (2004)
8	$\rm NHCl_{2}=H_{2}O\rightarrow NOH=2HC1$	$1.1 \pm 10^{2}{\rm M}^{4}{\rm s}^{4}$	Jafvert and Valentine (1987)	23	+ HOBr $+$ MI ⁴ $+$ MBr ⁴ HOBr $+$ NH ₂ Cl \rightarrow NHBrCl $+$ H ₂ O	2.66 x 10 ² M ⁴ x ⁴	Gozda and Marpersus
9	NOH + NHCl2 -+ N2 + HOCI + HCI	$2.8 \times 10^4 {\rm M}^4 {\rm s}^4$	Lens (1981)	1.2			(1994)
10	$\mathrm{NOH} + \mathrm{NH}_{2}\mathrm{CI} \rightarrow \mathrm{N}_{2} + \mathrm{H}_{2}\mathrm{O} + \mathrm{HCI}$	$8.3 \pm 10^{1} { m M}^{4} { m s}^{11}$	Leso (1981)	24	$\mathrm{OB}\mathrm{C}^*+\mathrm{NH}\mathrm{C}\mathrm{I}\to\mathrm{NH}\mathrm{B}\mathrm{C}\mathrm{I}^*=\mathrm{OH}$	$2.2 \times 10^4 {\rm M}^4 {\rm s}^4$	Gazda and Margorian (1994)
11	HOCI H' + OCT	pK,=7.54	Bodner and Paedue (1995)	25	NH-CI + NH-CI + Br → NHBrCI +	pH dependent*	Trofe et al. (1980): This
12	$NH_4^* \leftrightarrow NH_5 + H^*$	p869.24	Bodaer and Pardue (1995)	-	CT + NH.		week
15	$H_2CO_3 \leftrightarrow HCO_3^- \mp H^2$	pK ₂ = 6.55	Bodner and Parshar (1995)	26	NHIRCI + NHIRCI + HO - N	17.36%**	Volentine 1983; Thai
34	$HCO_1 \rightarrow CO_2^2 + H^2$	pK4 = 10.33	Bodner and Pardos (1995)	1.1	+ HOBy + HBy + 2HCI		week
1.	kH'(H"] = kH ₂ CO ₂ [H ₂ CO ₂] + kHCO	[HCO ₃] where kl	5CO1 = 11 M ² 8 ⁻¹ .	27	HOBe ++ OBe + H"	pK, -8.8	Hing and Heigne (1983)
	kHCO ₇ = 0.22 M ² h ³ kH ⁵ = 6944 M	1 ₈ 4		ko	= 0.5 M ⁻¹ s ⁻¹ + 5 x 10 ⁸ M ⁻² s ⁻¹ [H [*]] + 29	M341 [NH4] + 34	10 M ² s ⁴ [HCO ₁ ²]
NO	is the unidentified monochloromine a	ato-decouposition	intermediate	ka	~1 M ³ s ³ + 1 x 10 ⁹ M ² s ⁴ [H [*]] + 190	M ² s ⁻¹ [NH ₄ [*]] + 188	M ² s ³ [RCO ₄]
				3.0	- 0.2 M ³ s ⁴ + 8.5 x 10 ⁶ M ² s ⁴ [OII] +	3.2 x 101 M 3 1 [C	0,11
				22	~ 8.3 x 10 ³ M ⁻³ x ⁴ [NH ₂ CI[[Br][H ⁺]		

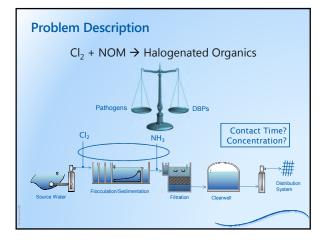
Chloramines – Other Considerations

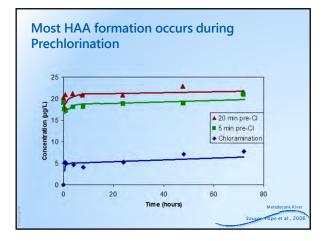

- Chloramine has been around for 90 years
- One in five Americans has chloraminated water
- EPA stated in its 1994 review that: "In humans, health effects do not appear to be associated with levels of residual monochloramines typically found in drinking water"
- Some individuals and groups may be inalterably opposed to the introduction of chloramines

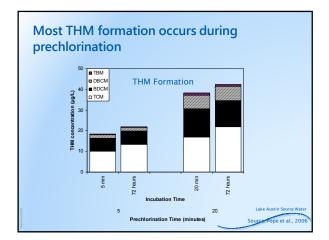
Columbia Conversion to Chloramination

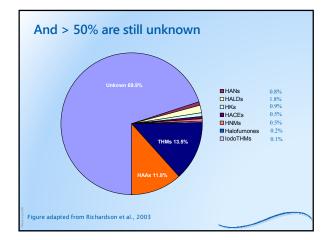

- Conversion from free chlorine disinfection to chloramination.
- Free Chlorine "burns" to limit nitrification







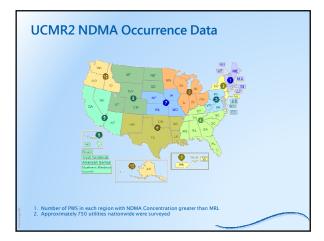


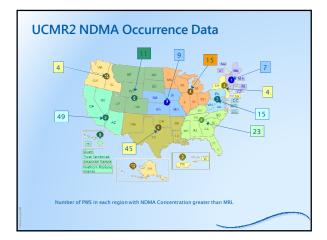


HAA formation during chloramination:

	npact HAA Formation
рН	HAA 🗋 as pH 👢
Bromide	HAA1 as Bromide
Total Organic Carbon (TOC)	HAA 🕽 as TOC 🎝
Chlorine/Nitrogen Ratio	HAA1 as Cl ₂ /N1
Temperature	HAA ¹ as Temperature 1
Residual	HAA Tas Residual T

Tł	ne EPA Cur	rrently Regulates 11 DBPs	
	4 THMs	(80 µg/L)	
•	5 HAAs	(60 µg/L)	
•	Chlorite	(1 mg/L)	
•	Bromate	(10 µg/L)	
	But, > 600 DBPs Have Been Identified		

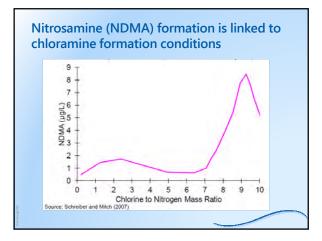




Several of emerging DBPs are on the EPA Contaminant Candidate List (CCL3)

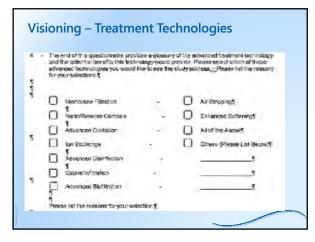
- 6 Nitrosamines (e.g., NDMA)
- Formaldehyde
- Bromochloromethane
- Chlorate

The 6 Nitrosamines were screened as part of the Unregulated Contaminant Monitoring Rule (UCMR2)



NDMA

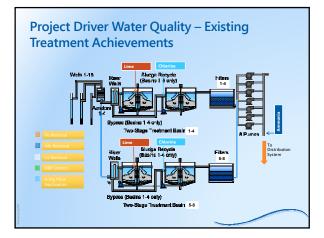
- Chlorination
 - Cationic Coagulation Polymers and Coagulant Aids (i.e., poly-DADMAC and epi-DMA)
- Chloramination
 - Formation is increased near breakpoint
 - Preoxidation with chlorine or ozone may decrease
- California Action Level = 10 ng/L



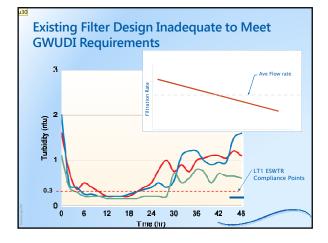
NDMA formation may be reduced by:

- 1. Reducing dichloramine formation during chloramination
 - a) Add chlorine upstream of ammonia at WTP
 - b) Elevate pH
 - c) Minimize Chlorine to Nitrogen Ratio i. Trade-offs with nitrification control
- 2. Add oxidants (e.g. free chlorine, ozone) prior to ammonia addition
- 3. Manage polymer addition
- 4. Source water protection (wastewater impacted source waters may form more NDMA)

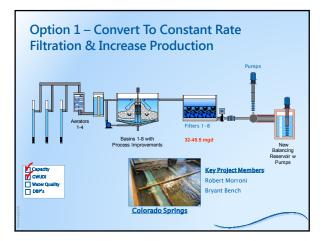
"Fatal Flaw" and "Must Include" List

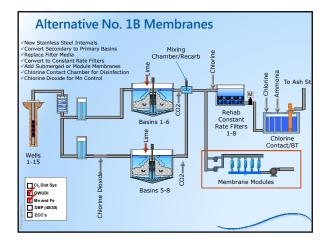

- "Must Include" or the Alternative will be eliminated from consideration
 - Capacity without Purchasing Water
 - Satisfy Regulatory Requirements
 - Meets Secondary Standards (Fe and Mn)
 - Meets Hardness Goal of 150 mg/L
 - Uses existing well field
 - Optimize existing infrastructure
 - Satisfy GWUDI compliance

"Fatal Flaw" and "Must Include" List

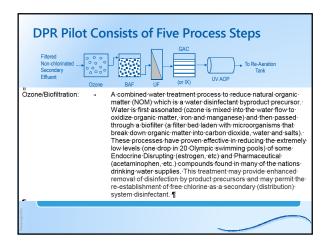

- "Fatal Flaw" will eliminate Potential Alternative from consideration
 - Technology has never been built at this scale
 - Inappropriate technology
 - Extremely inflated costs
 - Not acceptable to the Community

Techn	ologie	es for Evlaut	ion	
		Oxidation Te	chnologies	
Ferrate	Ch	nlorine Chlorine dic	xide Ozone	Ozone / H2O2
	UV	/ H2O2 UV / TiO	2 P. Acid / U	JV Permanganate
		Hardness Removal	Technologies	
Conventional Softening	Enhanced Softening	Softening with caustic Split Tr	eatment Pelletized Lime Reactor	Nanofiltration Reverse Osmosis
High Rate			Reactor	OSITIOSIS
Softening	Anion Exchan	ige		
		Filtration Tec	hnologies	
Nanofiltration	RO	Membranes (low pressure)	Biological filtration	Alternative filtration (bag, earth, slow sand)
Conventional		Deep bed with	Manganese coated	Greensand Filtration
Filtration		constant rate filtration	filter media	Greensand Filtration
		Disinfection By P	roduct Control	
GAC Filter	Contactors	PAC Contactors – Acticarb	Post Filtration GAC Columns	Nanofiltration/RO
Enhanced C	oagulation	PAC	Ozone/Biofiltration	EC Bromide Removal
Chlorine Do	se Control	MIEX	Air Stripping	TOC Specific Resin
		Disinfection Te	chnologies	
Chlori	ne	Chloramines	Ozone	Permanganate
UV		Chlorine Dioxide	Ferrate	Periacetic Acid

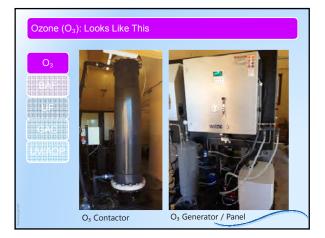




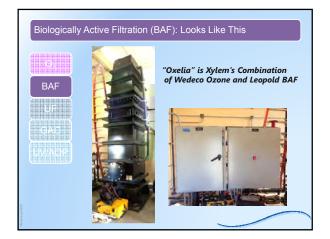
u30 Comment on the declining rate mode. Not appropriate for what they have. Find alot in Iowa because Cleasby. Slow Start concept. Maximum filtration rate. user, 4/27/2009

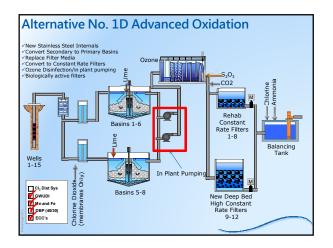


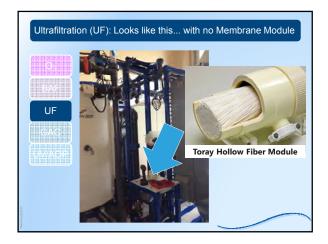
Technol	ogies for	Evlaution		
		Oxidation Technology	ogies	
Ferrate	Chlorine	Chlorine dioxide	Ozone	Ozone / H2O2
	UV / H2O2	UV / TiO2	P. Acid / UV	Permanganate
		oss Romoval Tachn		
Nano/Reverse Osm	memb of revv typica dissol enhar permii secon proce levels Endoc (aceta drinkin	orane using a separ erse osmosis to reir lly applied for mem ved organic contan ced removal of disi the re-establishme dary (distribution)'s sees have: proven e (one drop in 20 OU rrine Disrupting (es minophen, etc.) co ng water supplies.¶	ation process that nove dissolved or brane softening or hinants. This treat infection by produ- ent of free chlorin system disinfectat iffective in reduci ympic swimming- trogen, etc.) and f mpounds found i	tment may provide uct precursors and may e as both a primary and- nt. In addition, these ng the extremely-low- pools) of some Pharmaceutical- n many of the nations-
Chlorine Dose Co	ontrol N	AIEX P	ir Stripping	TOC Specific Resin
Ge	D	isinfection Technol	ogies	
Chlorine	Chlora	mines	Ozone	Permanganate
UV	Chlorine	Dioxide	Ferrate	Periacetic Acid


		Oxidatio	n Technologies			
Ferrate	Cł	lorine Chlori	ne dioxide	Ozone	Ozone / H2O	2
	107	/ 4202 187	17:00	D Acid (10)	Dermanstanat	~
Softening (precipit	tative):-	to water to remo	ove hardness (ca	heaters an	me, caustic soda, precipitation. This d otherwise improv	is:
Ion Exchange:	•		emical reaction b which ions may i		insoluble solid and	
		or dispersed ma This treatment r product precurs	agnetic resins to may provide enh ors and may per	lia, would b fix some o anced rem mit the re-	inget: This separat be to examine fixed riganic ions to the n oval of disinfection establishment of fro (distribution) system	bed esin by ee
GAC FILLER COR	ntactors	or dispersed ma This treatment r product precurs chlorine as both	agnetic resins to may provide enh ors and may per a primary and s	la, would b fix some o anced rem mit the re- econdary (e to examine fixed rganic ions to the r oval of disinfection establishment of fre	bed esin by ee
GAC Filter Con Enhanced Coap		or dispersed ma This treatment of product precurs chlorine as both disinfectant.¶	agnetic resins to may provide enh ors and may per a primary and s	ila, would b fix some o anced rem mit the re- secondary (ns	be to examine fixed rganic ions to the r oval of disinfection establishment of fre (distribution) syster	bed esin by ee
	gulation	or dispersed ma This treatment - product precurs chlorine as both disinfectant.¶ PAC contactors - Actica	agnetic resins to may provide enh lors and may per la primary and s arb Colum	ila, would b fix some o anced rem mit the re- econdary (ns tration	vanic ions to the n oval of disinfection establishment of frr (distribution) system nanonitration/RO	bed esin by ee
Enhanced Coa	gulation	or dispersed ma This treatment- product-precurs chiorne as both disinfectant.¶ PAC contactors – Actica PAC MIEX	agnetic resins to may provide enh ors and may per a primary and s aro Colum Ozone/Biofi	ila, would b fix some o anced rem mit the re- econdary (ns tration	e-to examine fixed oganic-ions-to-the-n oval-of-disinfection establishment-of-fr (distribution) system Nanonitration/KO EC Bromide Removal	bed esin by ee
Enhanced Coa	gulation	or dispersed ma This treatment- product-precurs chiorne as both disinfectant.¶ PAC contactors – Actica PAC MIEX	agnetic-resins-to may-provide-enh ors-and-may-per ra-primary-and-s aro Colum Ozone/Biofi Air Stripp	ila, would b fix some o anced rem mit the re- econdary (ns tration	e-to examine fixed oganic-ions-to-the-n oval-of-disinfection establishment-of-fr (distribution) system Nanonitration/KO EC Bromide Removal	bed esin by ee

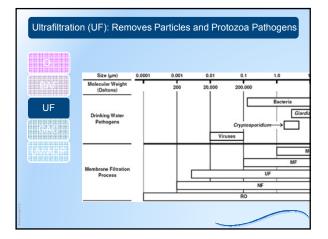
DPR Pilot Consists of Five Process Steps

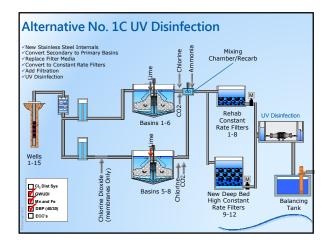

Advanced Disinfection:		Technologies (Ozone, chlorine dioxide, UV, low pressure membrane filtration) that are approved by the US-EPA to provide- primary disindection-of-dinking water that meet or exceed national standards without the use of free chlorine. This does not eliminate the use of chlorination in the process. Chlorination or Chloramination will be required by the Missouri Department of Natral resources following this process to produce a measurable residual disinfectant in the distribution system. Some of these technologies may provide enhanced removal of disinfection by product precursors and may permit the re-establishment of free chlorine as a secondary (distribution) system disinfectant.
Advanced Oxidation:	*	The process of adding or generating powerful ioxidants to oxidize trace levels of organic or microbiological organisms: h-water These processes have proven affective in reducing the extremely low levels (one drop in 20 Olympic swimming pools) of some Endocrine Disrupting (astrogen, etc) and Pharamaceutical- (acetaminophen, etc.) compounds found in many of the nations dinking water supples."

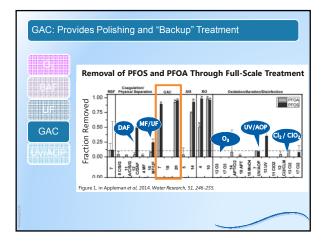


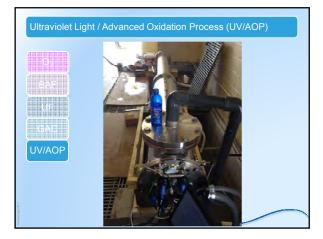


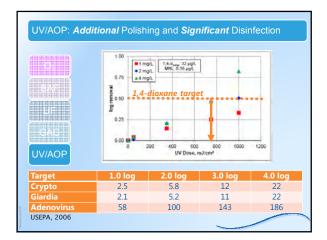
		ganics and Mi	ligates i		licu
	Compound	Max. Recommended	Secondary	, Tertiary Effluent	O _≫ BAF Filtrate
0.000		Value, ng/L	Effluent, ng/L	with UV ng/L	ng/L
<u>unnann</u>	Atenolol	70,000	710	120	<25
BAF	Atrazine	1,000	28	<10	<10
	Bisphenol A	200,000	<50	<50	<50
	Carbamazepine	1,000	140	192	<10
	DEET	2,500,000	54	232	<25
	Diclofenac	1,800	62	57	<25
	Gemfibrozil	45,000	31	12	<10
	Ibuprofen	400,000	<25	<25	<25
	Meprobamate	260,000	41	362	190
	Musk Ketone	350,000	<100	<100	<100
	Naproxen	220,000	<25	<25	<25
	Phenytoin	6,800	110	113	33
	Primidone	10,000	67	168	31
	Sulfamethoxazole	35,000	570	1,150	<25
	Triclosan	350	26	38	<25
	Trimethoprim	70.000	280	43	<10

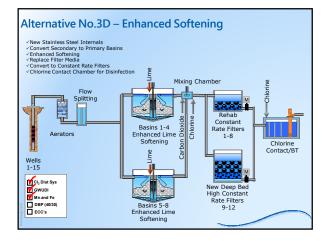


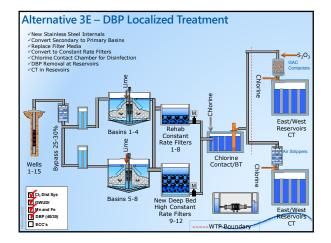




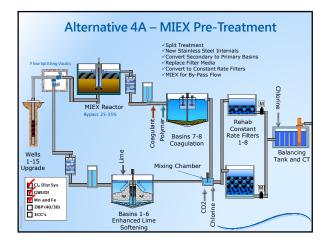


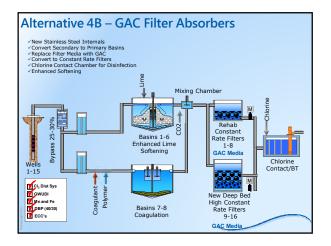






Other Technologies – DBP Control


- Enhanced Softening
- Post Treatment Aeration/Stripping
- Post Treatment Adsorption GAC
- Pretreatment MIEX
- Treatment GAC Filter Absorbers

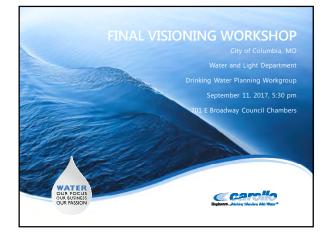




			DECISION LOG		€ carollo
	Project Client Job II Contract	City of Columbia, VO	0		10 8142517 Fr CL
TEM.	DECISION	DECISION	DECISION DESCRIPTION	DECISION	COMMENTS
1	Ceg	Townshi Meeting	Terry is appointed the chairmain for the group, no one was opposed	10-31-17	Vice chair is atil oper and will be filled in the future.
2	City	Townhall Meeting	Cecsion/Action log to include decisions made, date of the decision, who made the decision, etc. If there was a vote, the votero results are to be included.	15-34-17	
3	Chy	Townshi Meeting	All cost impacts to be displayed in anticipaled rate increase to a typical user.	10-346-17	Usage rate increases associated with planne improvements.
	City/Carolo	Townhall Meeting	Develop a systematic approach for evaluation of all abimatives. Score each of the abimatives as they relate to water quality, not monetary value, to datinguish the goals of the municipality.	10-346-17	Try and remove all emotional biases.
5		-			

			ON ITEM			Camila
	Parpets Character Job #	Ory of Columbia, MC	-		9478 - 8142 89 - 01	917
214	RESPONSIBLE	KCTTON	ITEM		ITEM COMPLETION	COMMENTS
	PARTY	TEM Competmentize the energing contaminants of concern	DATE IS JUST	DATE	DATE	
2	Carola	(ECCs) and their score Provide another to the public regariting model development and the model's capabilities	NUMPT			
1	DryiPhate	the moons capabilities Ask about what is most concerning so Carolo can hanne in and explain the things that are difficult to understand	Roualt			
_	-					
-			_	-		
-			-			

Next Steps


- Summarize Visioning Questionnaire
- Set Boundaries for Project
- Conduct Fatal Flaw Analysis and Present Recommendations
- Introduce Structured Decision Analysis
- Next Meeting: September 11, 2017

44

Workshop Purpose

- Finalize Visioning Exercise
 - Boundaries for Investigations
 - Establish Finished Water Quality Goals
- Introduce Structured Decision Analysis
 - Background
 - Homework Criteria Development

Workshop Agenda

- Review Visioning Questionnaire Responses
- Review Missioning Statement
- Set Project Boundaries
- Fatal Flaw Analysis Review/Discussion
- Introduction to Structured Decision Analysis
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members, and Staff
- Next Meeting Date

 To reduce anticipated operational expenses, should the current treatment goals to soften the water be abandoned in favor of less expensive treatment measures? (This may cause some consumers to install in-hone water softenes)

4 Continue Softening Treatment Goals

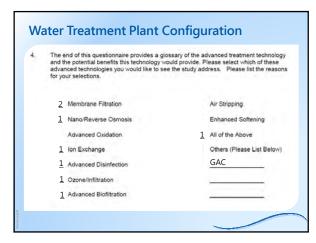
0 Discontinue Softening Treatment Goals

Citizens are accustomed to softened water

Softening delivers a higher quality product that customers expect

Water Treatment Plant Configuration

- 2 The secondary regulations concern the aesthetic aspects of a dinking water supply rather than the health aspects. Should any new teatment processes consider satisfying the current secondary regulations (suggested limits) as well as the primary regulations (required by law)? Satisfying the secondary regulations is currently done at the existing facilities.
 - 4 Continue Satisfying Secondary Suggested Limits for Aesthetic Properties

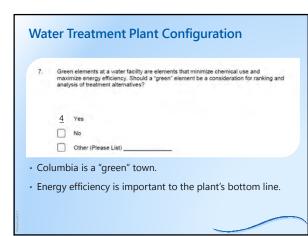

0 Discontinue Satisfying Secondary Suggested Limits for Aesthetic Properties

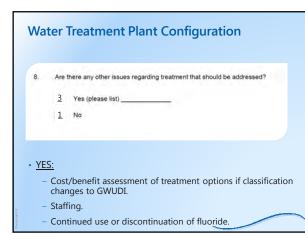
- Good to be ahead of the game. Secondary limits could be future regulations.
- Customers expect this quality of product

- Should the study examine abandoning and demolishing the existing water treatment plant (32 mgd) and constructing an entirely new facility with source water obtained from a different location at a significant cost to current and future customers? З.
 - 1 Existing Supply and Treatment Plant Should be abandoned
 - 2 Continue Use of Current Source and Treatment Facility

• Abandon:

- The investment in the existing facilities would be beyond our reasonable ability to pay.
- <u>Continue Use:</u>
 - Potential source issues (GW v GWUDI) can be met with treatment options as they arise.


- To satisfy regulations associated with disinfection by products, the City of Columbia converted from free chlorine to chloramines in the distribution system and conducts periodic conversions to chlorine to avoid issues that are associated with intification. There are more costly technologies that can be employed to satisfy all disinfection by product regulations and permit switching back to chlorine. Given this, how important is it to you that the City of Columbia switches back to the exclusive use of free chlorine in the distribution system? Please state the reasons for your selection:
 - 1 Absolutely Critical to Switch Back to Chlorine Very Important to Switch Back to Chlorine


 - Not Very Important
 - 1 Stay with Chloramines
 - 2 Other (Please list)

Other:

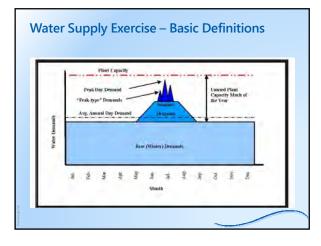
- Would like to use free chlorine if we could still meet the DBP rule.
- Prefer the solution that provides the most flexibility and benefits

- 6. Past investigations of surface water and groundwater sources in Missouri and throughout the country have detected the presence of extremely low levels (one drop in 20 Olympic swimming pools) of Endoorine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc), compounds in many drinking water supplies. Studies to determine if long-term exposure to the low concentrations of these constituents impact human health are at least 10 + years away and it is not certain when (if at all) some or all of these constituents will be regulated. Technologies that remove or destroy these compounds from the supply are available but are significantly more costly to implement than the current treatment process. Given this, how important is it to you that this study considers processes that remove or destroy these compounds? Please state the reasons for your selection.
 - Absolutely Critical to Remove or Destroy these Compounds No Matter the Expense.
 - 4 Study Should Evaluate the Costs/Benefits of Technologies that Remove or Destroy these Compounds.
 - Not Very Important that Study Considers Removal/Destruction of these
 - Study Should Not Consider Removal/Destruction of these Compounds.
 - Other (Please list)

Draft Mission Statement of Planning Workgroup

• "To enhance the quality of life for Columbia, Missouri Citizens by providing direction to Columbia Water and Light on the best means to continue its mission to provide at an affordable price; high-quality water and dependable service that exceeds customer expectations; protects and ensures a long-term water supply for future generations; and serves as responsible stewards of public health, utility resources, and the environment."

Do we want to make this more specific? I.e. best treatment process at the existing WTP?



Project Boundary Exercise

- Water Supply
- Finished Water Quality Goals
- Project Framework

Project Boundary Exercise

- Water Supply
- Finished Water Quality Goals
- Project Framework

Water Supply Exercise – 2016 IWRP **Recommendations**

- Establish Future Demand Scenarios
- Basic Assumptions Well Field:
 - Wells will continue to be a source of supply (29.6 mgd).
 - Wells will be expanded based upon
 - maximizing supply.
 - 1300 feet between well "pairs"
 - 200 feet from "surface water" source
 - Well Field has "space" for 52 mgd (30 wells, 2 standby)

Water Supply Exercise – 2016 IWRP Recommendations • Basic Assumptions – Water Quality:

- Utilize Chloride to Monitor
- Bias against high chloride wells (blend)
- Consider repurposing Close wells as "cutoff" wells
- Consider possibility of reclassification as GWUDI to allow flexibility to move wells closer to river

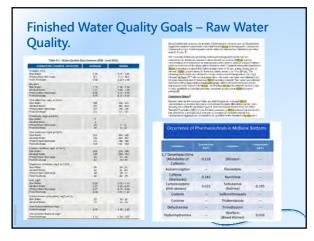
Water Supply Exercise- 2016 IWRP Recommendations

- Maximize Local Supply for Non Potable Use - Deep Wells for large irrigating/industrial supply
- Continue but do not expand ASR program

Water Supply Exercise-2016 IWRP Recommendations

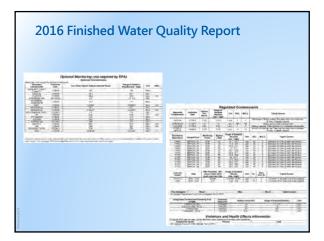
- Continue to expand and refine Conservation Program but harsh measures are not required due to abundance of Supply sources.
- Continue resolution with Integrated Stormwater Plan recommendations.

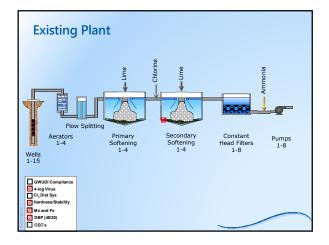
GWUDI vs GW Only


- Survey Results
- Decision Impacts

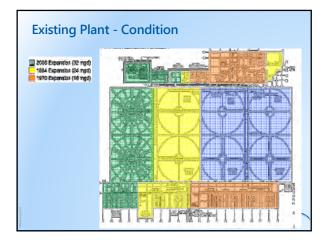
Statement	YES	NO	MAYBE
The DWPWG Accepts the Recommendation of the IWRP	\checkmark		
GWUDI Compliant Facility is Required			
Others?			
		\checkmark	

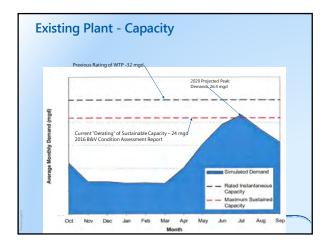
Project Boundary Exercise

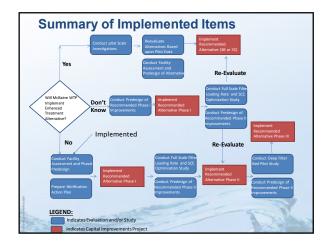

- Water Supply
- Finished Water Quality Goals
- Project Framework

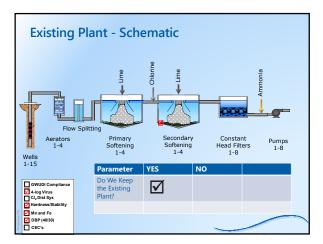


Contaminant	Regulatory Framework	Probability*
Perchlorate	2011 decision to regulate; NRDC settlement	Likely
Lead	Proposed Long Term-LCR rule expected 2017	Likely
Cyanotoxins	2015 health advisories (HA); UCMR4; CCL4	Likely
Strontium	2014 preliminary decision to regulate	Likely
Chlorate	3rd Six Year Review; Pesticide Office	Possible
NDMA	3rd Six Year Review	Possible
Cr(VI)	UCMR3; CCL4	Possible
1,4-dioxane	UCMR3; CCL4	Maybe
Perfluorocompounds	2016 revised HA; UCMR3; CCL4	Maybe
Brominated DBPs	UCMR4; 3rd Six Year Review	Maybe
Manganese	UCMR4; CCL4	Maybe









- Should the study examine abandoning and demolishing the existing water treatment plant (32 mgd) and constructing an entirely new facility with source water obtained from a different location at a significant cost to current and future customers?
 - 1 Existing Supply and Treatment Plant Should be abandoned
 - 2 Continue Use of Current Source and Treatment Facility

• Abandon:

- The investment in the existing facilities would be beyond our reasonable ability to pay.
- <u>Continue Use:</u>
 - Potential source issues (GW v GWUDI) can be met with treatment options as they arise.

Parameter	Regulatory Value	Enhanced WQ Value	YES	NO	MAYB
Turbidity	≤ 0.3 NTU for 95% of individual Filter Readings ≤ 1.0 NTU in 100% of individual Filter Readings	Eventual Goal of Partnership Standards for New Designs, <0.1 NTU for 95% of individual Filter Readings <0.3 NTU in 100% for individual filter Readings.		V	
Disinfection	Giardia – 2 log Virus – 4 log Cryptosporidium – 2 log (bin 1)	NONE		\checkmark	
TTHM HAA	<_80ug/L RAA ≤ 60 ug/L RAA	≤ 64 ug/L RAA ≤ 48 ug/L RAA		\checkmark	
Total Chlorine entering System	< 4.0 mg/L	1.2-1.5 mg/L		$\mathbf{\Lambda}$	
NDMA	NR	< 10 ng/L		\checkmark	
Chlorate	NR	NR		\checkmark	
Brominated DBP's	NR	(See TTHM/HAA)		$\mathbf{\nabla}$	

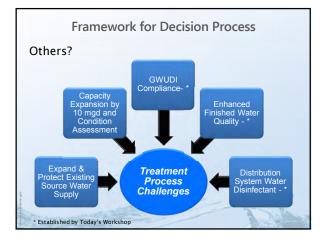
- To satisfy regulations associated with disinfection by products, the City of Columbia converted from free chlorine to chloramines in the distribution system and conducts periodic conversions to chlorine to avoid issues that are associated with nitrification. There are more costly technologies that can be employed to satisfy all disinfection by product regulations and permit switching back to chlorine. Given this, how important is it to you that the City of Columbia switches back to the exclusive use of free chlorine in the distribution system? Please state the reasons for your selection: 5.
 - 1 Absolutely Critical to Switch Back to Chlorine Very Important to Switch Back to Chlorine
 - Not Very Important
 - 1 Stay with Chloramines
 - 2 Other (Please list)

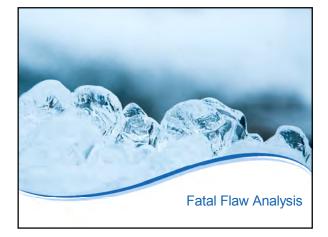
Other:

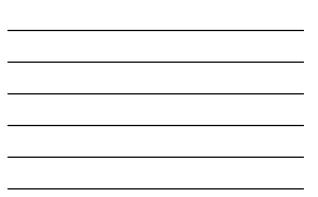
- Would like to use free chlorine if we could still meet the DBP rule.
- Prefer the solution that provides the most flexibility and benefits.

Water Treatment Plant Configuration

- Past investigations of surface water and groundwater sources in Missouri and throughout the country have detected the presence of extremely low levels (one drop in 20 Olympic swimming pools) of Endocrine Disrupting (estrogen, etc) and Pharmaceutical (acetaminophen, etc), compounds in many dinitiving water supplies. Studies to determine if long-term exposure to the low concentrations of these constituents impact human health are at least 10+ years away and it is not certain when (if all signed to the constituents will be regulated. Technologies that remove or destroy these compounds from the supply are available but are significantly more costly to implement than the current treatment process. Given this, how important is it to you that this study considers processes that remove or destroy these compounds? Please state the reasons for your selection. 6. Absolutely Critical to Remove or Destroy these Compounds No Matter the Expense.

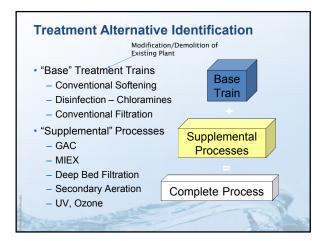

 - 4 Study Should Evaluate the Costs/Benefits of Technologies that Remove or Destroy these Compounds.
 - Not Very Important that Study Considers Removal/Destruction of these Compounds.
 - Study Should Not Consider Removal/Destruction of these Compounds.
 - Other (Please list)_



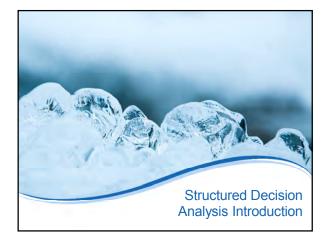


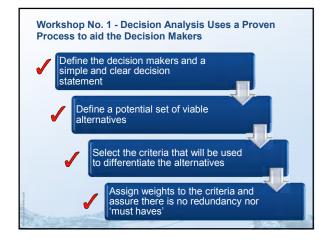
Project Boundary Exercise

- Water Supply
- Finished Water Quality Goals
- Project Framework

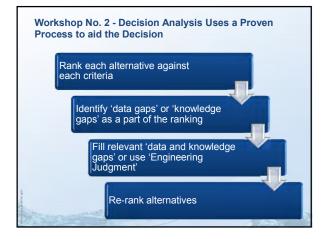


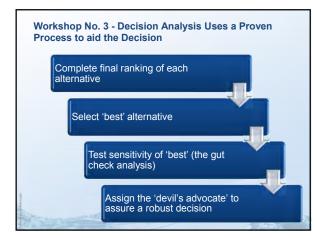
"Fatal Flaw" and "Must Include" List


- "Must Include" or the Alternative will be eliminated from consideration
 - Capacity without Purchasing Water
 - Satisfy Regulatory Requirements
 - Meets Secondary Standards (Fe and Mn)
 - Meets Hardness Goal of 150 mg/L
 - Uses existing well field
 - Optimize existing infrastructure
 Satisfy GWUDI compliance



15


Techno	ologies fo	or Fatal F	law Ev	aluation	
	CEC Ox	idation/Removal	Technologies		
Ferrate	Chlorine	Chlorine dioxide	e Ozone Ozone / Hź		
Wet Air Oxidation	UV / H2O2	UV / TiO2	P. Acid / L	JV Permanganate	
	Hardn	ess Removal Tech	nologies		
Softening High Pate	Enhanced Softeni Softening cau ion Exchange	ng with Solit Treatme	Dellester datas	Nanofiltration Reverse Osmosis	
		Filtration Technol	ogies		
Nanofiltration	RO	mbranes pressure)	Biological filtration	Alternative filtration (bag, earth, slow sand)	
Conventional Filtration		bed with Ma rate filtration	nganese coated filter media	Greensand Filtration	
	Disi	nfection By Produ	ct Control		
GAC Filter Cont			st Filtration GAC Columns	Nanofiltration/RO	
Enhanced Coag	ulation F	PAC Oz	one/Biofiltration	EC Bromide Removal	
Chlorine Dose 0	Control N	1IEX	Air Stripping	TOC Specific Resin	
2	Di	sinfection Techno	logies		
Chlorine	Chlora	mines	Ozone	Permanganate	
UV	Chlorine	Dioxide	Ferrate	Periacetic Acid	

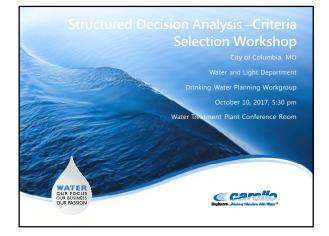


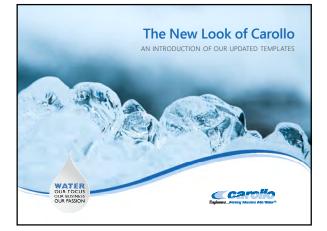
DECISION LOG					
			DECISION LOG	1	Camila
Ministre Bill Celevel Celevel Celevel Adv B B					
neu No	DECISION	DECISION	DECLSION DESCRIPTION	DECISION	COMMENTS
2	CRI	Townhall Meeting	Teny is appointed the chairmain for the group, no one was opposed.	14-Aug-17	vice Chur has been filled.
2	City.	Townal Meeting	Decision/Action log to indiude decisions made, date of the decision, who made the decision, etc. If there way a vote, the voting results are to be indiuded.	10-Juli-17	
3	Ċ0	Townsal Meiting	At cost impacts to be displayed in anticipated rate increase to a typical user:	10-348-17	Usage rate increases associated with planned improvements.
à.	Ob/Carolo	Townhall Meeting	Develop a systematic approach for evaluation of all alternatives. Score each of the alternatives as they make to water quality, not monetary value, to distinguish the poals of the manipulation.	10-Jul-17	Try and remove all emotional blases,
8	City	Towns al Meeting	Jule is appointed vice char for the group with no objections.	14.Aug-17	1
0	Ch	Townhall Meeting	Questionairre is to be filled out by members of the convertise and bity staff	14-Aug-17	Public should be involved in the future when decisions are narrowed down.
7		1.1.1.1.1	12		1
1					

			ON ITEM			Carello	
	Projects				DATE: 0142017		
	Client Job R Contract I	City of Columbia, INC			87	а.	
ITEM	RE SPONSIBLE PARTY	ACTION	TTEM	TANCET RESOLUTION DATE	COMPLETION DATE	COMMENTS	
×.	Carolo	Compartmentize the emerging contaminants of concern (FCC%) and they accer	10-Jpl-17	14-Aug-17	t&Augist		
2	Carsile	Provide insight to the public regarding model development and the models capabilities.	10-34-17	11-Sep-17	11-Sep-17	Caretie Wanking on Wodel Fact Sheet	
3	CRYPLOR	Ask about what is most concerning as Carple can narrow is and anyles the things that are difficultie understand.	10-34-17	11-Sep-17			
4	Carolo	Create handout with measure statement for review and, approval at next meeting.	14-Aup-17	11-Sep-17	16.5ep-17	Confirmed Mission statement at \$115/17 meeting	
8	Chilhale	All questionaires filed jul and to Disawi by the 25th	14-Aug-17	25-Aup-17	25-Aup-17	Carolio received 6 surveys and summarize in 29/11/71 meeting	
4	Sheet	Vake available moniforing well data (upload to wedetle)	14-402-17	11-549-17		IL BRITTINE C	
1	Steve	Develop historical treatise of where Columbia has been and where they are now with treatment	14.kup.17	11-Sep-17		the second second	
	Carolio	Send out copies of the presentation to everybody that attended the meeting.	14-Aug-17	15-Aug-17	16-Aug-17	Carolo working on Binder for all and provid at subsequent meeting	
8		Summarize recommendations of previous study that has	14-Aug-17	11-Sep-17	11-Sep-17		
	Carsio	already been performed compared to what is being					
8	Carsilo	arready ceen performed compared to what is being certormed now. Should e annexi water quality report in next presentation	14-Aug-17	11-5ep-17	11-Sep-17		

Carollo:

- Carollo.
- Complete Fatal Flaw Analysis Based Upon Visioning framework.
- Develop Base Treatment Alternatives
- Develop Additional Treatment Alternatives
- Present Potential Treatment Alternatives for Shortlisting
- Workgroup:
 - Review Criteria and add/subtract
- Carollo/Workshop
 - Paired Comparison of Criteria to establish importance.
 - Shortlist of Treatment Alternatives
- Next Meeting: October 10th, 18th, 23rd





Appendix E SUMMARY OF STRUCTURED DECISION ANALYSIS WORKSHOPS

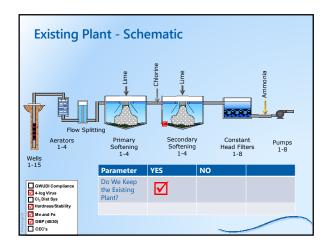
- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundaries
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date

Adjournment

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundarie
- Fatal Flaw Analysis Review/Discussion
- · Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA
- Criteria Selection
- Cintena Nanking
- retrett riction, beetston
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting L
- Adjournmen

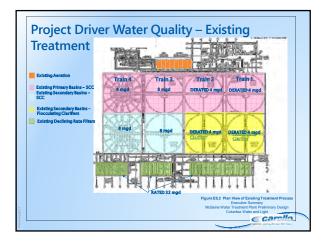
- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundari
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Log
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Dat
- Adjournment

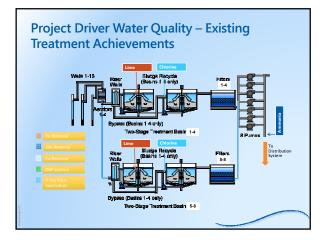
Parameter	Regulatory Value	Enhanced WQ Value	YES	NO	MAYB
Turbidity	≤ 0.3 NTU for 95% of individual Filter Readings ≤ 1.0 NTU in 100% of individual Filter Readings	Eventual Goal of Partnership Standards for New Designs, <0.1 NTU for 95% of individual Filter Readings <0.3 NTU in 100% for individual filter Readings.			V
Disinfection	Giardia – 2 log Virus – 4 log Cryptosporidium – 2 log (bin 1)	NONE			V
TTHM HAA	<_80ug/L RAA ≤ 60 ug/L RAA	≤ 64 ug/L RAA ≤ 48 ug/L RAA			
Total Chlorine entering System	< 4.0 mg/L	1.2-1.5 mg/L			\checkmark
NDMA	NR	< 10 ng/L	\checkmark		
Chlorate	NR	NR	\checkmark		
Brominated DBP's	NR	(See TTHM/HAA)			



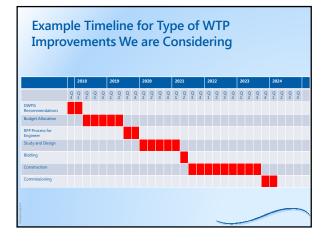
Parameter	Regulatory Value	Enhanced WQ Value	YES	NO	MAYBE
CEC's	Not Regulated	Treatment Process to Maximize Removal of Type of Compounds detected.			\checkmark
Chloramines	Not Regulated	Eliminate Need for Chloramines in System			\checkmark
Fluoride	4.0 mg/L MCL 0.7 mg/L MCLg	0.0 mg/L MCLg		\checkmark	

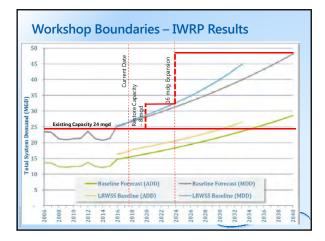
Agenda • Review Mission Statement • Review Water Quality Goals • Summarize Visioning/Project Boundaries • Fatal Flaw Analysis Review/Discussion • Treatment Process Review and Shortlist Discussion • Introduction to Structured Decision Analysis (SDA) • Introduction to Structured Decision Analysis (SDA) • Criteria Selection • Criteria Ranking • Review Action/Decision Logs • Review Next Steps • General Comments by Public, Members and Staff

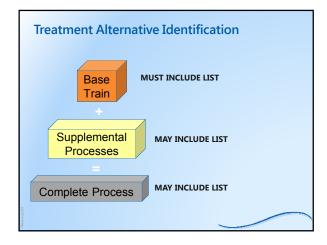








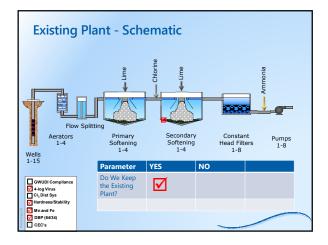


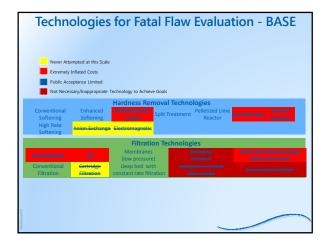

Project Visioning- "Must Include List"

- "Must Include" or the Alternative will be eliminated from consideration
 - Reuse Existing Plant Infrastructure
 - Continued Expansion of Wellfield per IWRP
 - Meets all water quality goals for Groundwater Facility (current treatment level- softening).
 - Addresses Ageing Infrastructure as Identified in 2016 Condition Assessment to restore capacity of 32 mgd in short term (next 3 years).
 - Expansion of Plant to 48 mgd per IWRP by 2024

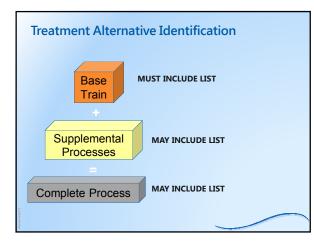
Project Visioning- "May Include List"

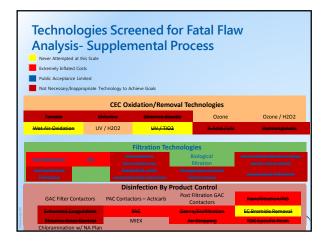
- "May Include" will be distinguished as a second or third tier alternative
 - Meets all water quality goals for a GWUDI Facility
 - Will enable plant to eliminate chloramines as a disinfectant in the distribution system.
 - Will maximize reduction of CEC's

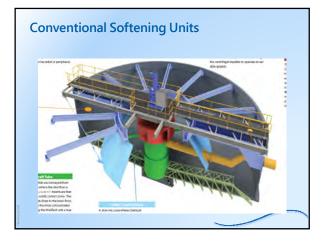

- Review Mission Sta
- Review Water Quality Goals
- Summarize Visioning/Project Boundaries
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournmen



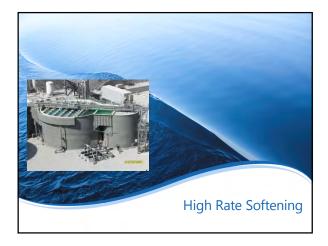
"Fatal Flaw" and "Must Include" List


- "Fatal Flaw" will eliminate Potential Alternative from consideration
 - Technology has never been built at this scale
 - Inappropriate technology
 - Extremely inflated costs
 - Not acceptable to the Community

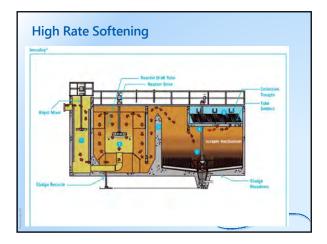


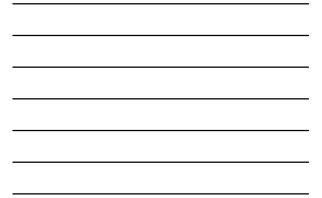

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundarie
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis
- Criteria Selection
- citerio realiting

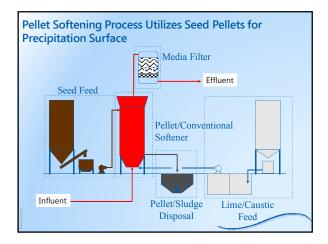
- Novt Monting Date
- Adjournment

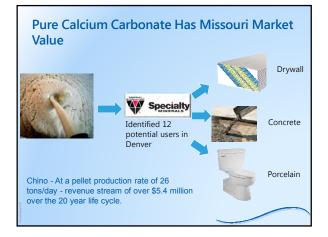

Base Treatment Alternatives • Softening: - Conventional Softening (B1) - High Rate Softening (B2) - Pellet Softening (B3) - Nanofiltration/RO (B4) • Filtration: - None - Conventional - High Rate Conventional - Membrane

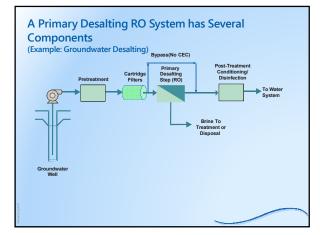
- DBP Control:
- Chloramines
- Disinfection:
 - Chlorine

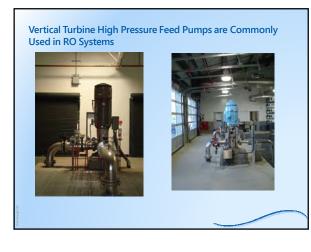






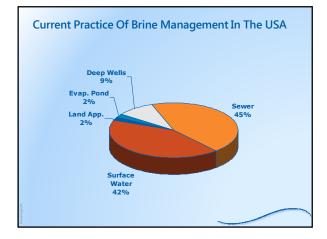


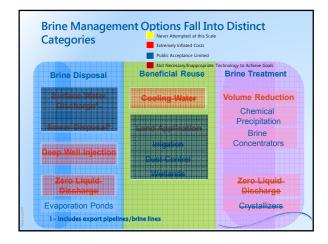


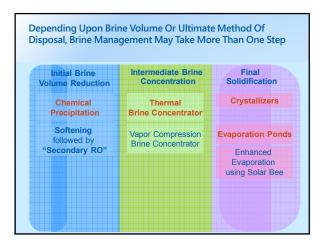




13

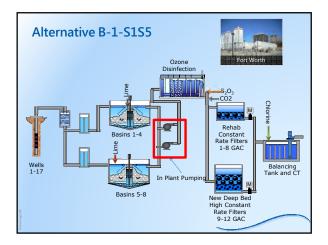

This RO plant in Hilton Head, SC Treats 3-mgd in Four RO Trains





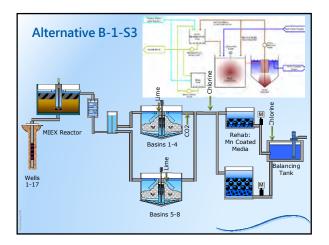


Base	Softe	ning			Filtra	tion			DBP Contr	ol	Disinf n	ectio	Relative Cost
	Conv	HR	Pellet	RO	Conv	HR	Mem	None	Chlor amine s	No additi onal	Chlori ne		
B1-1	х				х				х		х		Low
B1-2	х					х			х		х		Low
B1-3	х						x		х		х		M/H
B2-1		х			х				х		х		Low
B2-2		х				х			х		х		Med
B2-3		х					х		х		х		M/H
B3-1			Х					Х	Х		Х		Med
B4-1				Х				х	х		Х		Highest
OTHER													
Grou	ndwater Tr	o atmost	Blant ON	I.V.									

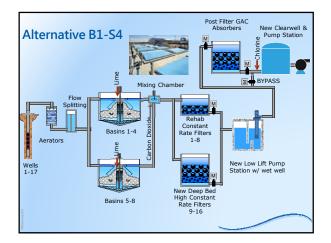


Analysis- Never Attempted at the Extremely Inflated Cor Public Acceptance Line	his Scale	eened for nental Pro		w								
	CEC Oxi	idation/Removal	Technologies									
Ferrate	Chlorine	Chlorine dioxide	Ozone	Ozone / H2O2								
Wet Air Oxidation	UV / H2O2	UV / TiO2	P. Aeid / UV	Permanganate								
	Filtration Technologies											
Nanofiltration	80.	embranes Lorossure)	Biological filtration	Alternative filtration (bag,								
Conventional Filtration	Beer Constan		filtration anganese coated -filter media									
	Disi	infection By Prod	uct Control									
GAC Filter Conta	actors PAC Contac	tors – Acticarb	ost Filtration GAC Contactors	Nanofiltration/RO								
Enhanced-Cooge	lation 4	nac o	zone/Biofiltration	EC Bromide Removal								
Chlorine Dose C Chloramination w/		VIEX	Air Stripping	TOC Specific Resin								

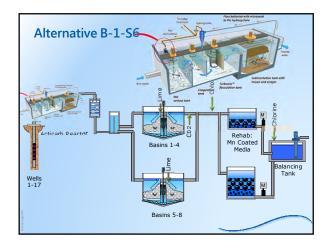
Suppli	CEC Ren	noval		DBP C	ontrol				Relative Cost
	Ozone/Pe roxide (S1)	UV/Pe roxide (S2)	None	MIEX (S3)	GAC Contac tors (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)		
B1-1-S1S5	х					х			Lower
81-1-5255		¥				¥			M-H
81-1-5355	¥			¥					Highest
B1-1-S3			Х	х					M-H
B1-1-S4			х		х				Lower
B1-1-S6			х				Х		M-H
B1-1-S1S4	х				х				High
B1-3-S4						х			M-H
B1-3-S6							х		High
B3-1-S1S5	Х					Х			High
B3-1-S5						Х			M-H
B4-1									Highest



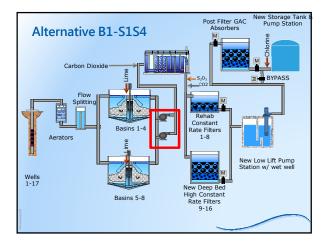
Alt.	CEC Rei	moval		DBP C	ontrol			Relative Cost
	Ozone/P eroxide (S1)	UV/Pero xide (S2)	None	MIEX (S3)	GAC Contacto rs (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)	
B1-1-S1S5	Х					х		Lower
B1 1 S2S5		×				×		M-H
81 1 5355	×			×				Highest
B1-1-S3			х	х				M-H
B1-1-S4			х		х			Lower
B1-1-S6			х				х	M-H
B1-1-S1S4	х				х			High
B1-3-S4						х		M-H
B1-3-S6							х	High
B3-1-S1S5	Х					Х		High
B3-1-S5						Х		M-H
B4-1								Highest



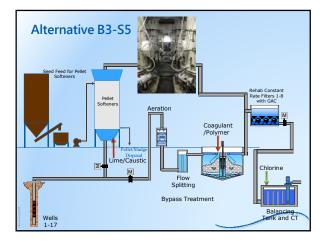
Alt.	CEC Rei	moval		DBP Co	ontrol			Relative Cost
	Ozone/P eroxide (S1)	UV/Pero xide (S2)	None	MIEX (S3)	GAC Contacto rs (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)	
B1-1-S1S5	Х					х		Lower
81-1-5255		¥				¥		M-H
81-1-5355	¥			¥				Highest
B1-1-S3			х	Х				M-H
B1-1-S4			х		х			Lower
B1-1-S6			х				х	M-H
B1-1-S1S4	х				х			High
B1-3-S4						х		M-H
B1-3-S6							х	High
B3-1-S1S5	Х					Х		High
B3-1-S5						х		M-H
B4-1								Highest

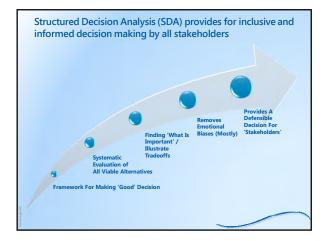


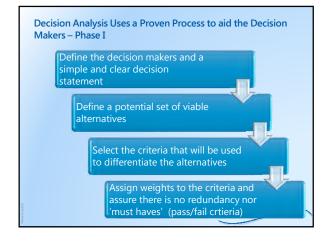
Alt.	CEC Rei	moval		DBP Co	ontrol			Relative Cost
	Ozone/P eroxide (S1)	UV/Pero xide (S2)	None	MIEX (S3)	GAC Contacto rs (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)	
B1-1-S1S5	х					х		Lower
B1 1 5255		×				×		M-H
B1 1 5355	×			×				Highest
B1-1-S3			х	х				M-H
B1-1-S4			х		х			Lower
B1-1-S6			х				х	M-H
B1-1-S1S4	х				Х			High
B1-3-S4						х		M-H
B1-3-S6							х	High
B3-1-S1S5	Х					Х		High
B3-1-S5						Х		M-H
B4-1								Highest

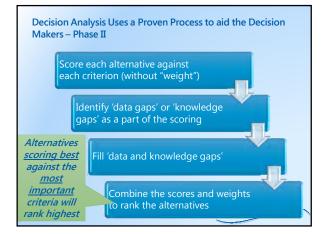


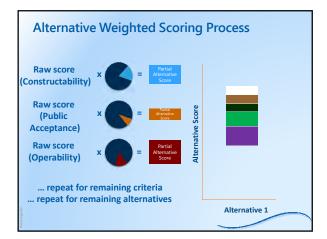
Alt.	CEC Rei	moval		DBP Co	ontrol			Relative Cost
	Ozone/P eroxide (S1)	UV/Pero xide (S2)	None	MIEX (S3)	GAC Contacto rs (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)	
B1-1-S1S5	х					х		Lower
81 1 S2S5		×				×		M-H
81 1 5355	×			×				Highest
B1-1-S3			х	х				M-H
B1-1-S4			х		х			Lower
B1-1-S6			Х				х	M-H
B1-1-S1S4	х				х			High
B1-3-S4						х		M-H
B1-3-S6							х	High
B3-1-S1S5	Х					Х		High
B3-1-S5						Х		M-H
B4-1								Highest

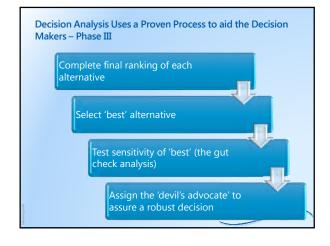


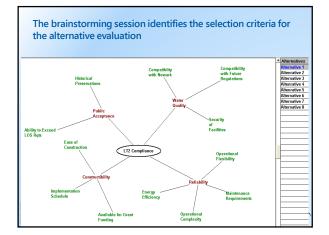

Alt.	CEC Rei	moval		DBP Co	ontrol			Relative Cost
	Ozone/P eroxide (S1)	UV/Pero xide (S2)	None	MIEX (S3)	GAC Contacto rs (S4)	GAC Filters (S5)	Acticarb (PAC) (S6)	
B1-1-S1S5	х					х		Lower
81-1-5255		¥				¥		M-H
81-1-5355	¥			¥				Highest
B1-1-S3			х	х				M-H
B1-1-S4			х		х			Lower
B1-1-S6			х				Х	M-H
B1-1-S1S4	х				х			High
B1-3-S4						х		M-H
B1-3-S6							х	High
B3-1-S1S5	Х					Х		High
B3-1-S5						Х		M-H
B4-1								Highest

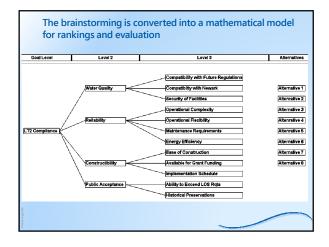


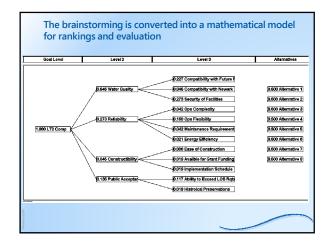

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Bound
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Log
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournment

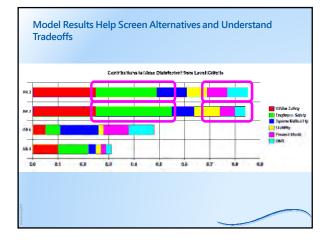


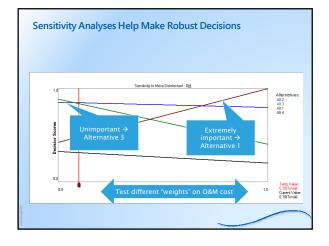


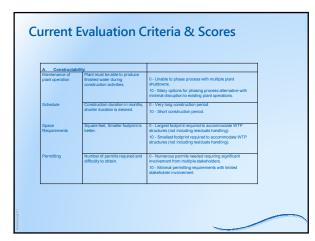


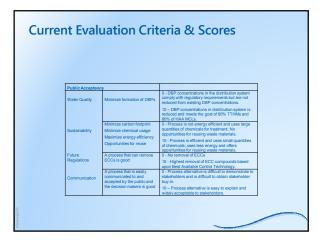












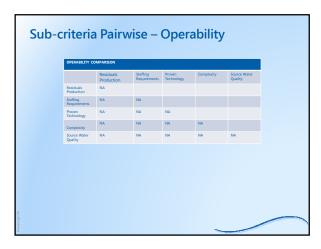
- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundari
- Fatal Flaw Analysis Review/Discussion
- Criteria Selection
- · Criteria Ranking
- Review Action/Decision Lo
- Review Next Step
- General Comments by Public, Members and Staff
- Next Meeting Da
- Adjournment

Curre	nt Eval	uation Crit	eria and Scores	
	C. Operability Residuals Production	Tons per year Smaller quantities of	0 - High residuals production. 10 - Low residuals production.	
	Staffing Requirements	Alternatives that do not require intensive training and large numbers of operators are desirable.	 0 - Extensive training is required and the process requires several operators at any given time. 10 - Training requirements are less complicated and fewer operators are required to operate the process. 	
	Proven Technology	Alternatives including processes with a proven track record score higher than newer, less proven technologies.	0 - No full-scale installations. 10 - Extensive full-scale experience both in number of installations and number of years in service.	
	Maintenance Complexity	Mechanical Intensity. Alternatives with more processes and/or a higher degree of sophistication are less desirable.	0 - Numerous processes with extensive short- and long-term maintenance needs. 10 - Fewer processes with low level of sophistication.	
	Source water Treatability	Alternatives includes processes that can handle large variability in source water quality without impact to finished water quality is good.	 0 - Many processes sensitive to water quality changes requiring frequent operator intervention. 10- Fewer processes sensitive to water quality changes requiring less operator intervention. 	
Flexans.pp1/73				\frown

Current Evaluation Criteria and Scores

Others:

- Operational Costs
- Maintenance Costs
- Life Cycle Costs
- Capital Costs
- Impact on Rates as compared to ???? (MHI???, Fixed income customer???)
- GWUDI Compliance



					Cons					-
CONSTRUC	TABILITY CO	ABILITY COMPARISON								
		tain Plant ations	Schedu	le	Space Requirement	s	Permitti	ng		
Maintain Pla Operations	int NA									
Schedule	NA		NA							
Space Requiremen	NA ts		NA		NA					
Permitting	NA		NA		NA		NA			
									NA	
COST COMPAR										
	Life Cycle	Operation	al M	aintenance	Capital					
Life Cycle	NA									
Operational	NA	NA								
Maintenance	NA	NA	N							
Capital	NA	NA	N		NA					

riteria Pairwise – Water Quality			ity		
				-	·
WATER QUALITY		Sustainability	Water Quality-	Communication	
	Water Quality Goals -TTHMS	Sustainability	CEC's	Communication	
Water Quality Goals - TTHMS	NA				
Sustainability	NA	NA			
Water Quality- CEC's	NA	NA	NA		
Communication	NA	NA	NA	NA	
					NA
					-

	Constructability	Water Quality	Operability	GWUDI	COST	
Constructability	NA					
Water Quality	NA	NA				
Operability	NA	NA	NA			
SWUDI	NA	NA	NA	NA		
COST	NA	NA	NA	NA	NA	

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Bounda
- Fatal Elaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournment

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundaries
- Eatal Flaw Analysis Review/Discussion
- Tractment Brogger Barling 1.01 all set
- Introduction to Structured Decision Application (CDA)

- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournmen

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundari
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussio
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Da
- Adjournment

Next Steps

- Development of Shortlisted Alternatives
 - Process Schematic
 - Description with respect to criteria
 - Estimated Costs: Capital and Life Cycle
- Issue TM prior to Meeting
- Meeting to review and rank alternatives with respect to criteria: (Shorten Shortlist)

Agenda

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundaries
- Fatal Flaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Disc
- Introduction to Structured Decision Analysis (SDA)
- Critoria Cal
- Critoria Beallin
- Review Action/Decision Loos
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date

Adjournment

- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundarie
- Fatal Flaw Analysis Review/Discussion
- Ireatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Log
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date Monday November 13, 2017 5:30 pm Broadway
- Adjournment

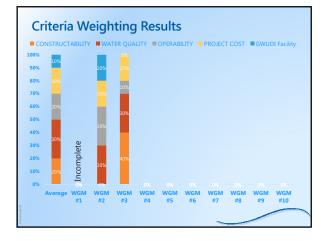
- Review Mission Statement
- Review Water Quality Goals
- Summarize Visioning/Project Boundar
- Eatal Elaw Analysis Review/Discussion
- Treatment Process Review and Shortlist Discussion
- Introduction to Structured Decision Analysis (SDA)
- Criteria Selection
- Criteria Ranking
- Review Action/Decision Lo
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date Monday November 13, 2017 5:30 pm Broadway
- Adjournment

- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortlisted Alternatives
- Review Data Gaps
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournment

- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundarie
- Discuss/Review Alternatio
- SDA Model
- Discuss and Rank Shortlisted Alternative
- Review Data Gaps
- Review Action/Decision L
- Deview Mart Change
- Consul Comments by Dublic Marsham and

- Aujournment

Finalize Mission Statement and Goals

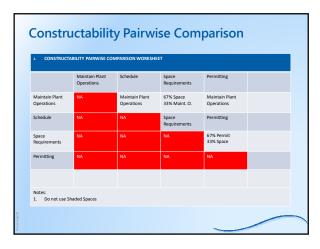

FINAL Braft MissionStatements for Drinking Water Planning Warfgroup:

Silveonalitesment: Healdegiaening resonen societiosu torite Waker and Ught Adalasay Inemiaed the City Council regarding the expansion Orbiterwise traductors spaces by adalability researce and hygoday determing spacessmed citizing and adalability af Managarding and assessment of Internet societabilitizetteant technologijos to dotornine the process or processon shall best most tables or interia.

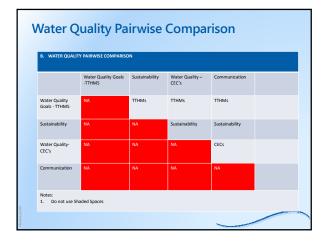
The foods of the Difficient Matter Planning Managers, and experience

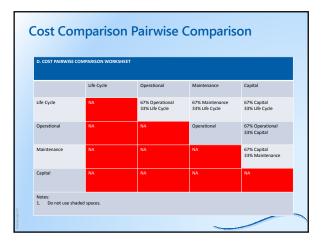
- Instock of the DiAlong Vietur Planning Visionsprong one existing
 Instancesson planning status planning instances paper and with parameters of planning
 Instancesson planning status planning instances and
 Instancesson planning status planning instances and
 Instancesson planning status planning instances
 Instancesson planning instances
 Instancesson and
 Instancesson planning instances
 Instancesson and
 Instancesson planning
 Instancesson and
 Instan

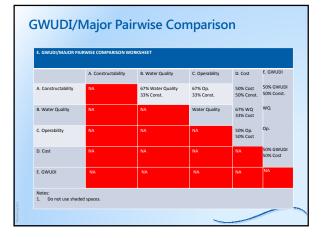
- Review Pairwise Comparison Result
- SDA Model



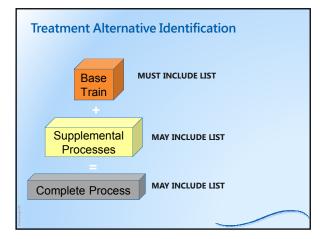
Voting to Accept Pairwise Comparisons

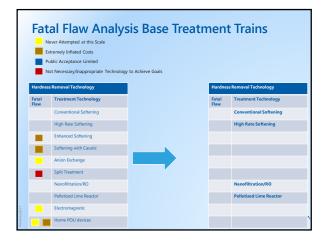

- Accept pairwise comparisons as is?
- Potentially delay schedule to incorporate pairwise comparisons from this workshop?

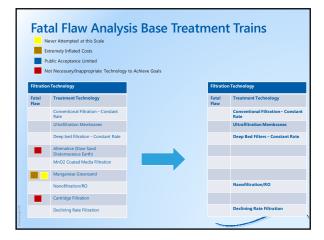




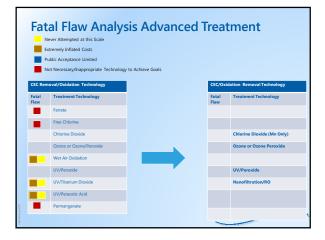
Operability Pairwise Comparison OPERABILITY PAIRWISE COMPARISON WORKSHEET Complexity Source Water Quality Residuals Production Staffing Requirements Proven Technology 67% Staffing 33% Res. Complexity 67% Source WQ 33% Residuals Proven Tech Residuals Production 67% Staffing 33% Source WQ Staffing Requirements 67% Tech. 33% Staffing 67% Staffing 33% Complex 67% Comple 33% Tech. Proven Tech Proven Technology dty Complexity Complexity NA Source Water Quality Notes: 1. Do not use shaded spaces.

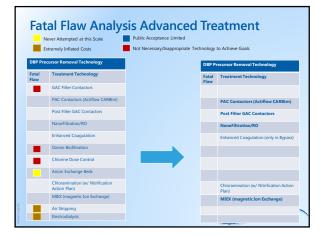


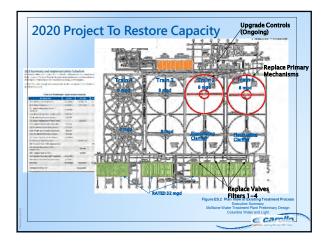

- Finalize Mission State
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortlisted Alternative
- Review Data Gaps
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournment

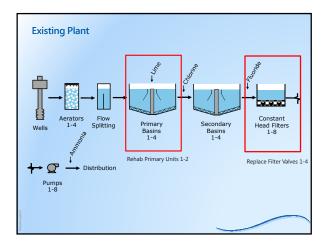


"Fatal Flaw" and "Must Include" List


- "Fatal Flaw" will eliminate Potential Alternative from consideration
 - Technology has never been built at this scale
 - Inappropriate technology
 - Extremely inflated costs
 - Not acceptable to the Community

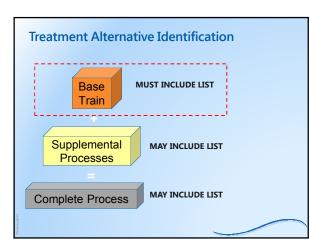


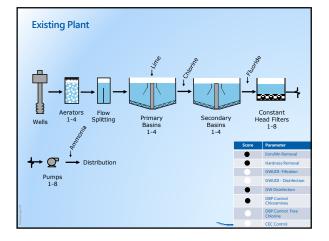




Project Visioning- "Must Include List"

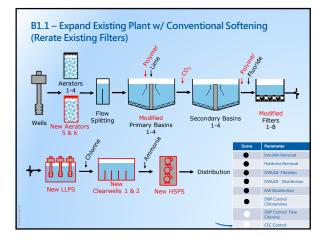
- "Must Include" or the Alternative will be eliminated from consideration
 - Reuse Existing Plant Site
 - Continued Expansion of Wellfield per IWRP
 - Meets all water quality goals for Groundwater Facility (current treatment level- softening).
 - Addresses Aging Infrastructure as Identified in 2016 Condition Assessment to restore capacity of 32 mgd in short term (next 3 years).
 - Expansion of Plant to 48 mgd per IWRP by 2024




Project Visioning- "May Include List"

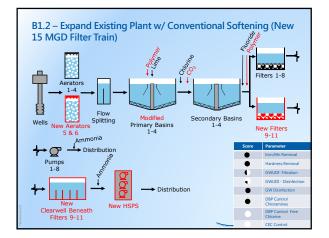
- "May Include" will be distinguished as a second or third tier alternative
 - Meets all water quality goals for a GWUDI Facility
 - Will enable plant to eliminate chloramines as a disinfectant in the distribution system.
 - Will maximize reduction of CEC's

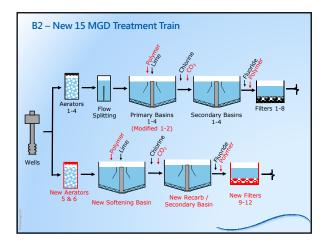
- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortlisted Alternatives
- Review Data Gaps
- Review Action/Decision Log
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Dat
- Adjournment

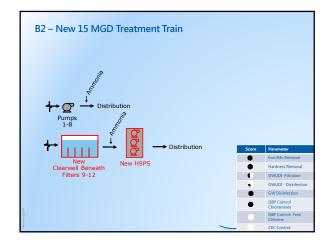




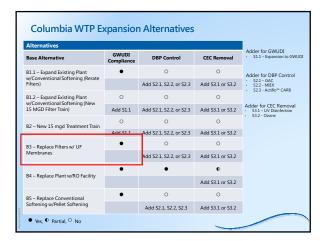
Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUD
B1.1 – Expand Existing Plant	•	0	0	Adder for DBP Control
w/Conventional Softening (Rerate Filters)		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	 S2.1 - GAC S2.2 - MIEX S2.3 - Actification CARB
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal S3.1 – UV Disinfection S3.2 – Ozone
B2 – New 15 mgd Treatment Train	0	0	0	- 33.2 · 02016
	Add S1.1	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	
B3 – Replace Filters w/ UF Membranes	•	0	0	
		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
B4 – Replace Plant w/RO Facility	•	•	0	
64 - Replace Plant W/RO Facility			Add S3.1 or S3.2	
B5 – Replace Conventional	•	0	0	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3	Add 53 1 or 53 2	

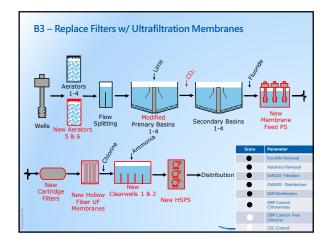


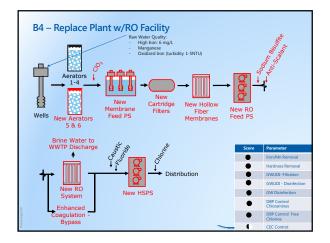




Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUE
B1.1 – Expand Existing Plant	•	0	0	Adder for DBP Control
w/Conventional Softening (Rerate Filters)		Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	 S2.1 - GAC S2.2 - MIEX S2.3 - Artiflo[™] CARB
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	· S2.5 · ACINO CARD
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	Adder for CEC Removal • S3.1 – UV Disinfection
B2 – New 15 mgd Treatment Train	0	0	0	 S3.2 - Ozone
	Add S1.1	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	
B3 – Replace Filters w/ UF	•	0	0	
Membranes		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
	•	•	0	
B4 – Replace Plant w/RO Facility			Add S3.1 or S3.2	
B5 – Replace Conventional	•	0	0	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3	Add \$3.1 or \$3.2	

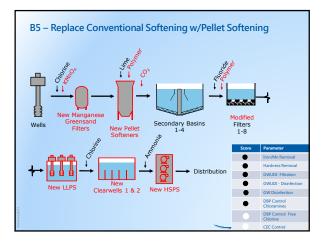


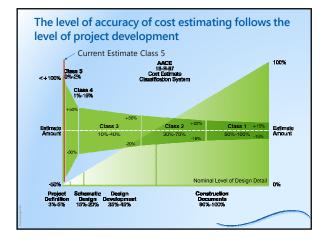




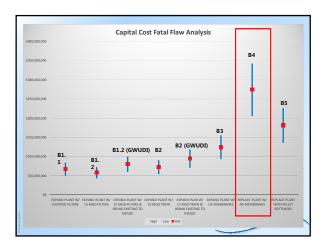
Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUE
B1.1 – Expand Existing Plant w/Conventional Softening (Rerate	•	0	0	Adder for DBP Control
Filters)		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	 S2.1 – GAC S2.2 - MIEX S2.3 - Actiflo³⁴ CARB
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal S3.1 – UV Disinfection S3.2 – Ozone
B2 – New 15 mgd Treatment Train	0	0	0	- 33.2 · 02018
	Add S1.1	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	
B3 – Replace Filters w/ UF	•	0	0	
Membranes		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
R4 Replace Director/DO Facility	•	•	0	
B4 – Replace Plant w/RO Facility			Add S3.1 or S3.2	
B5 – Replace Conventional	٠	0	0	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3	Add \$3.1 or \$3.2	

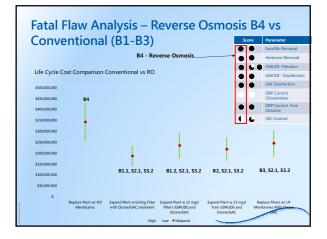
Source Water Quality



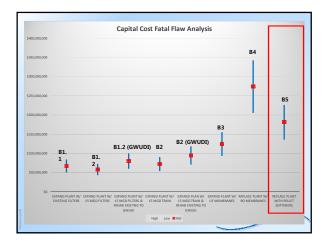


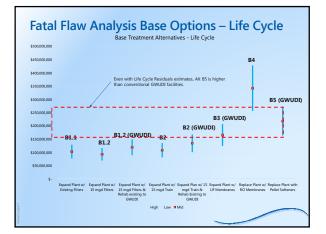
Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUD
B1.1 – Expand Existing Plant w/Conventional Softening (Rerate	•	0	0	Adder for DBP Control
Filters)		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	 S2.1 – GAC S2.2 - MIEX S2.3 - Artiflo[™] CARR
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal S3.1 – UV Disinfection S3.2 – Ozone
B2 – New 15 mgd Treatment Train	0	0	0	 S3.2 - Ozone
	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
B3 – Replace Filters w/ UF Membranes	•	0	0	
		Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	
	•	•	0	
B4 – Replace Plant w/RO Facility			Add S3.1 or S3.2	
B5 – Replace Conventional	•	0	0	
Softening w/Pellet Softening		Add S2.1, S2.2, S2.3	Add \$3.1 or \$3.2	

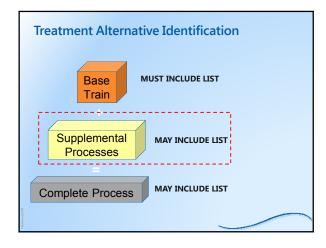


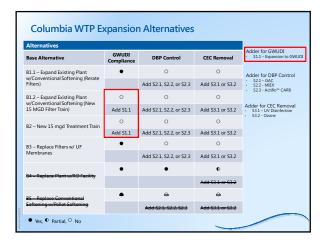

Cost Estimate

- Class 5 AACE Order of Magnitude
- Markups
 - General Conditions 8%
 - Contractor Overhead and Profit – 10%
 - General Conditions 8%
 - Engineering and Admin – 12%
 - Contingency 50%
- All alternatives provide a plant capacity of 48 mgd

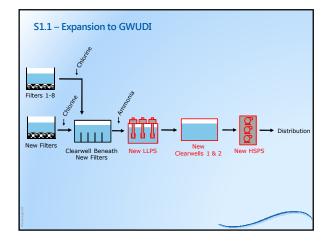

- Cost Development
 - 2016 Condition Assessment
 - Historical data
- Market TrendsVendor Quotes
- Cost Estimating Manuals
- 0&M
 - 13 MGD Average Annual Flow
 - Current Dosages
 - \$0.08 per kWh
 - 0.25% of Capital for O&M

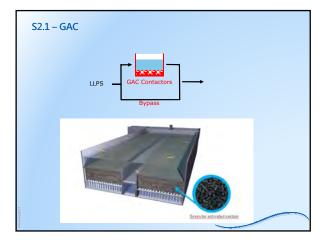


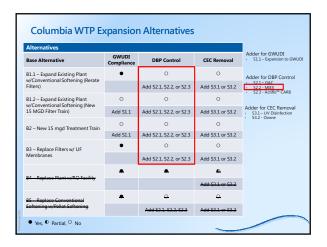



Fatal Flaw Analysis

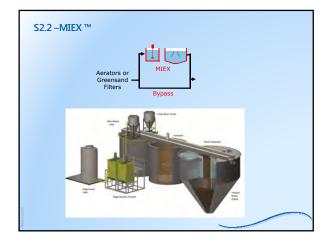
- Eliminate B4 from Consideration:
 - RO membranes too expensive
 - Permitting of Brine disposal problematic
 - Well water quality (oxidized iron, turbidity, silica) not conducive to RO treatment, requires pre-treatment prior to membranes.

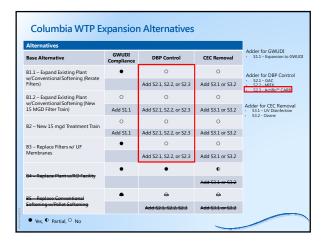

 - Conventional technologies with advanced treatment still less expensive to achieve same goals.
- Eliminate B5 from Consideration:
 - Pellet softeners too expensive (capital)
 - Insufficient sales revenue to tip operational costs in favor of pellet softening
 - Well water quality (iron, manganese) not conducive to Pellet softeners. Require pretreatment to remove iron/manganese to prevent fouling.
 - Other base alternatives achieve same goals with lower costs (hardness removal)

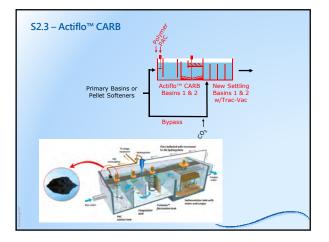


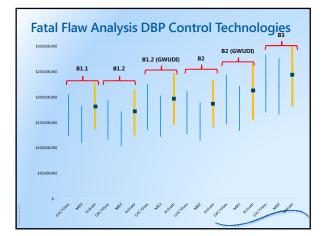


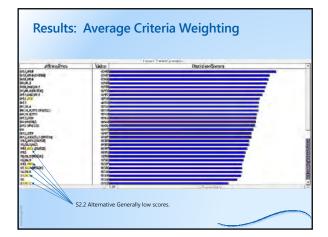
Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUE
B1.1 – Expand Existing Plant w/Conventional Softening (Rerate	•	0	0	Adder for DBP Control
W/Conventional Softening (Rerate Filters)		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	S2.1 - GAC S2.2 - MIEX S2.3 - Actiflo ²⁴ CARB
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal - S3.1 – UV Disinfection - S3.2 – Ozone
B2 – New 15 mgd Treatment Train	0	0	0	 53.2 - Uzone
	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
B3 – Replace Filters w/ UF Membranes	•	0	0	
		Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
84 - Poplaco Plantav/PO Facility	٠	٠	÷	
			Add S2.1 or S2.2	
85—Replace Conventional	٠	÷	÷	
Softening w/Pellet Softening		Add \$21 \$22 \$22	Add \$2.1 or \$2.2	





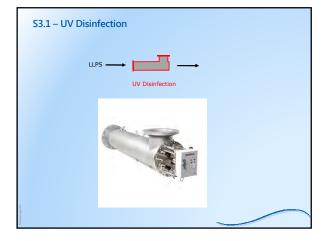






Fatal Flaw Analysis

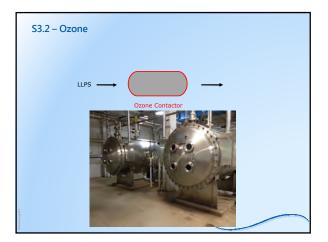
- Eliminate S2.3 (Actiflo Carb) from Consideration:
 - Incorporation into existing treatment train more difficult
 - Higher operating costs due to solids disposal and Chemical (PAC) costs
 GAC and/or MIEX are better alternative to controlling DBP's.

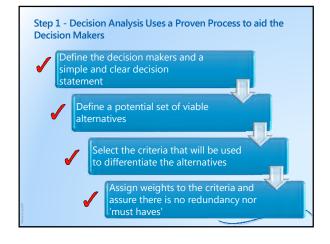


Fatal Flaw Analysis

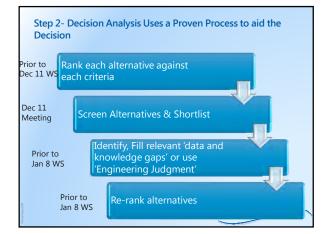
- Eliminate MIEX S2.2:
 - Permitting- Brine Stream Disposal
 - Operability- More complicated control than other DBP control technology.
 - Constructability Difficult integration within existing processes.

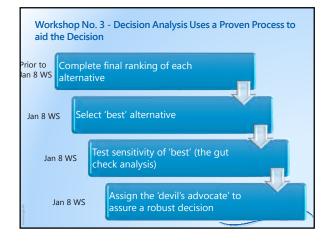
Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUD
B1.1 – Expand Existing Plant w/Conventional Softening (Rerate	•	0	0	Adder for DBP Control
Filters)		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	 S2.1 – GAC S2.2 – MIEX S3.2 – Astille 21 CARR
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal S3.1 - UV Disinfection S3.2 - Ozone
B2 – New 15 mgd Treatment Train	0	0	0	33.2 ° 02011e
	Add S1.1	Add S2.1, S2.2, or S2.2	Add \$3.1 or \$3.2	
B3 – Replace Filters w/ UF	•	0	0	
Membranes		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	
	•	•	0	-
			Add 53.1 or 53.2	
85 Replace Conventional	٠	₽	÷	
Softening w/Pellet Softening		44010202	Add 533 ar 533	

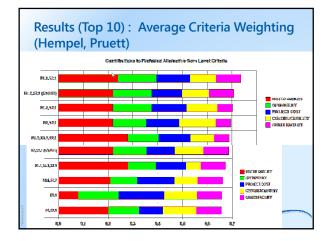




Alternatives				Adder for GWUDI
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	S1.1 – Expansion to GWUE
B1.1 – Expand Existing Plant w/Conventional Softening (Rerate	•	0	0	Adder for DBP Control
Filters)		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	S21-GAC
B1.2 – Expand Existing Plant w/Conventional Softening (New	0	0	0	
15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	Adder for CEC Removal S3.1 – UV Disinfection S3.2 – Ozone
B2 – New 15 mgd Treatment Train	0	0	0	53.2 - Ozone
	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	
B3 – Replace Filters w/ UF Membranes	•	0	0	
		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	
84 - Roolaco Plantur/RO Facility	•	•	0	-
Bit - Kopiaco Hantw/KO Facility			Add \$2.1 or \$2.2	
B5 - Replace Conventional	٠	÷	÷	
Softening w/Pellet Softening		Add \$21 \$22 \$22	Add \$21 or \$2.2	

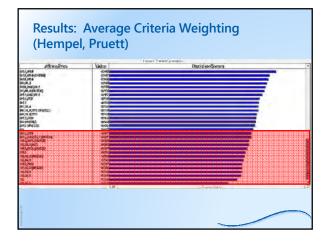



- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundarie
- Discuss/Review Alternatives
- · SDA Model
- Discuss and Rank Shortlisted Alternatives
- Review Data Gaps
- Review Action/Decision I
- Poviow Novt Stops
- General Comments by Public, Members and Sta
- Next Meeting Date
- Adjournment


- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortlisted Alternatives Tabled Until December 11, 2017?
- Review Data Gap
- Review Action/Decision L
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Dat
- Adjournment

Alternatives				Adder for GWUDI	
Base Alternative	GWUDI Compliance	DBP Control	CEC Removal	Adder for GWUDI S1.1 – Expansion to GWUDI	
B1.1 – Expand Existing Plant	•	0	0	Adder for DBP Control	
w/Conventional Softening (Rerate Filters)		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2	S2.1 - GAC S2.2 - MIEX S2.2 - MIEX	
B1.2 – Expand Existing Plant	0	0	0		
w/Conventional Softening (New 15 MGD Filter Train)	Add S1.1	Add S2.1, S2.2, or S2.3	Add S3.1 or S3.2	Adder for CEC Removal S3.1 – UV Disinfection S3.2 – Ozone	
B2 – New 15 mgd Treatment Train	0	0	0	 S3.2 - Uzone 	
	Add S1.1	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2		
B3 – Replace Filters w/ UF Membranes	•	0	0		
		Add S2.1, S2.2, or S2.2	Add S3.1 or S3.2		
	•	•	0		
on - replace main w/no-racinty			Add 53.1 or 53.2		
85 Replace Conventional	٠	÷	÷		
Softening w/Pellet Softening		Add 52 1 52 2 52 3	Add S3.1 or S3.2		

#	Base Alt.	Title	Sup. Alt.	Title
1	B1.1	Expand Plant w/ Existing Filters	NA	
2	B1.1	Expand Plant w/ Existing Filters	S2.1	GAC Filters
3	B1.1	Expand Plant w/ Existing Filters	\$3.2	Ozone/Biof.
4	B1.1	Expand Plant w/ Existing Filters	S2.1, S3.1	GAC Filters, UV Disinfection
5	B1.1	Expand Plant w/ Existing Filters	S2.1, S3.2	GAC Filters, Ozone/Biof.
6	B1.2	Expand Plant w/ New 15 mgd Filters	NA	
7	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1	GWUDI
8	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S2.1	GWUDI, GAC Filters
9	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S3.2	GWUDI, Ozone/Biof.
10	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S2.1, S3.2	GWUDI, GAC Filters, Ozone/Biof.
11	B2	Expand Plant w/ New 15 mgd Train	NA	
12	B2	Expand Plant w/ New 15 mgd Train	S1.1	GWUDI
13	B2	Expand Plant w/ New 15 mgd Train	S1.1, S2.1	GWUDI, GAC Filters
14	B2	Expand Plant w/ New 15 mgd Train	S1.1, S3.2	GWUDI, Ozone/Biof.
15	B2	Expand Plant w/ New 15 mgd Train	S1.1, S2.1, S3.2	GWUDI, GAC Filters, Ozone/Biof.
16	B3	Replace Filters w/ UF Membranes	NA	
17	B3	Replace Filters w/ UF Membranes	S2.1	GAC Filters
18	B3	Replace Filters w/ UF Membranes	\$3.2	Ozone/Biof.
29	B3	Replace Filters w/ UF Membranes	S2.1, S3.2	GAC Filters, Ozone/Biof.



			MERRITT -			SKALA -		SZEWCZYK	FALLIS -	CONWAY -		JACKSON
			NA			NA	RYAN - NA		NA	NA	OFF - NA	NA
		AVERAGE	missing			missing	missing	missing	missing	missing	missing	missing
	ALTERNATIVE	WEIGHT	weights	HEMPEL	PRUETT	weights	weights	weights	weights	weights	weights	weights
	B1.1,S2.1	1		1	6							
	B1.2,52.1 (GWUDI)	2		2	9							
	B1.2,S2.1	3		8	2							
	B2,S2.1	4		15	1							
	B1.2,S3.2,S2.1	5		6	5							
	B2,S2.1 (GWUDI)	6		5	4							
	B1.1,S3.2,S2.1	7		3	19							
Ranking	B1.1,S2.2	8		10	24							
1.2	B1.1	9		11	20							
2	B3,S2.1	10		13	7							
Sa Sa	B2,S2.1,S3.2 (GWUDI)	11		4	14							
	B2,S2.1,S3.2	12		12	10							
Preliminary	B1.1,S3.2	13		9	21							
a l	B2 (GWUDI)	14		17	8							
- E	B1.2 (GWUDI)	15		19	12							
E	82	16		24	3							
	B1.2,S3.2	17		23	11							
E.	B1.2,S3.2,S2.1 (GWUE	18		7	28							
.	B1.2,S3.2 (GWUDI)	19		16	25							
	B3,S2.1,S3.2	20		14	15							
	B1.2,S2.2 (GWUDI)	21		20	29							
	B1.2	22		27	17							
	B2,S3.2 (GWUDI)	23		18	22							
	B2,S3.2	24		26	13							
	B1.2,S2.2	25		28	27							
	B2,S2.2 (GWUDI)	26		21	26							
	B3,S3.2	27		22	18							
	B2,52.2	28		29	16							
	B3	29		25	23							
	B3,S2.2	30		30	30							
Rien								-				

#	Base Alt.	Title	Sup. Alt.	Title
1	B1.1	Expand Plant w/ Existing Filters	NA	
2	B1.1	Expand Plant w/ Existing Filters	S2.1	GAC Filters
3	B1.1	Expand Plant w/ Existing Filters	\$3.2	Ozone/Biof.
4	B1.1	Expand Plant w/ Existing Filters	S2.1, S3.1	GAC Filters, UV Disinfection
5	B1.1	Expand Plant w/ Existing Filters	S2.1, S3.2	GAC Filters, Ozone/Biof.
6	B1.2	Expand Plant w/ New 15 mgd Filters	NA	
7	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1	GWUDI
8	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S2.1	GWUDI, GAC Filters
9	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S3.2	GWUDI, Ozone/Biof.
10	B1.2	Expand Plant w/ New 15 mgd Filters	S1.1, S2.1, S3.2	GWUDI, GAC Filters, Ozone/Biof.
11	B2	Expand Plant w/ New 15 mgd Train	NA	
12	B2	Expand Plant w/ New 15 mgd Train	S1.1	GWUDI
13	B2	Expand Plant w/ New 15 mgd Train	S1.1, S2.1	GWUDI, GAC Filters
14	B2	Expand Plant w/ New 15 mgd Train	\$1.1, \$3.2	GWUDI, Ozone/Biof.
15	B2	Expand Plant w/ New 15 mgd Train	S1.1, S2.1, S3.2	GWUDI, GAC Filters, Ozone/Biof.
16	B3	Replace Filters w/ UF Membranes	NA	
17	B3	Replace Filters w/ UF Membranes	S2.1	GAC Filters
18	B3	Replace Filters w/ UF Membranes	\$3.2	Ozone/Biof.
29	B3	Replace Filters w/ UF Membranes	\$2.1, \$3.2	GAC Filters, Ozone/Biof.

- Finalize Mission State
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortl
- Review Data Gaps
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date
- Adjournment

Identify and Review Data Gaps

General:

- Develop Layouts to clarify constructability ratings.
- Modify alternatives to address potential permitting issues (if possible).
- Modify alternative to address potential operability issues. (if possible).
- B1.1, B1.2 (GWUDI), and B2 (GWUDI) Alternatives
 - (B1.1) Rerating of Filters to > 6 gpm/sqft for 45 mgd
 - Improvement of exisitng filters (32 mgd) for GWUDI
- GAC S1.2 Alternatives
 - GAC cost and replacement frequency
 - Revisit MIEX (if necessary) as potential for some options
- Ozone Alternatives:
 - Develop Bromate control strategies and costs

- Update costs for Transmittance values.

UV alternatives:

- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlis
- SDA Model
- Discuss and Rank Shortlisted Alternatives
- Review Data Gap
- Review Action/Decision Logs
- Review Next Ste
- General Comments by Public, Members and Staff
- Next Meeting Dat
- Adjournment

			DECISION LOG		Carrillo
		City of Domesia Ma	Hoore Update - Trainer Votilations	UPDATE	a Ministratii Re-
<u>.</u>	Universities By	DECISION FORME	DECEMBY DESCRIPTION	DALESSON TANK	contract (
2	- Dy	Theshall Mersing	The pring amount the recent revelation unities in the FATE that the country safe to cognituate vertical vertical the entropy wellahly	9.6ap.07	
۰.	P	Toronical Meeting	The group should consider all acting the to (2+UD) strengture	25/162-17	
4	14	Tourieul Hairing	The proof the life of any set the willing share as reasoned to abordoning and soliting a two plant	iller!	
	10ģ	Torshill Mining	Persistent within possible provides the TTHM and HAA strategies for anilational VID values of EXE upt. NAA and EXE york. FLAS, respectively.	7.6kp-07	
	Ph.	-	Finalised equin goally grade for total celestia activity for typfield may main connect regulatory values of the enhanced WG values of a 18 mpt. and 12:15 mpt.	Topics.	This departize character in the chicana co Mananteres
2	E91	Townhall Meeting	international Construction of the stating groups for NOMA should mean the anti-price of WG scalary of a Wingh.	9.5kp-17	
0	PH	Timbel Menny	Financed wave quality goals For O longer shall meet the enhanced VG uplant	10407	
*	24	Toestal News	Finative wave quality possis for Bromma wit DBP's shall meet the entraneed VS values	Silie-D	
8	-oy	Tourisal Massing	Possible team applies for CBIC's may meet access regalations solved on the enflational VG values	Kilapit	
6	Dyl.	Toolul Marting	Finance party gally goar to Orignations may meet	Orgente	
ŧ	Dy.	Transformer	Perchade any quality goals for Founds that meet carent regitation states to maintain around 17 mgA.	Stipt	
10	Continue	T	have making with a ladge the McDers W7P at 5.0 per-	6/light	

		ACTIC	ON ITEM			€ carelle
						19160917 8H
1111	HI SPONSER I	ACTION	TTEM	1ANCET KI.SOLUTION DATE	COMPLETION DATE	COMMENTS
11	Carolo	Previde brider containing part and falline meterial to conmittee members	11-849-17	dia 17	10-0(6-17	
12	Carolo	Notify and present massor eatersent at the next meeting for approval	113ep-17	0di 17	10-Dct-17	
12	Shave	Send out pol to group for next months meeting date with October 16 being the preformed date.	11-Sep-17	Sep-17	12-Sep-17	
44	Carolo	Send out address musicin statement	10-065-17	13-08-17	12-06-17	
16	Cersel/Dave.	Send out storing sheets for sub-ortiefs pross-eventeation eventses	10-0(6-17	13-06-17	12-0(6-17	
н	EPy .	Fill out and return econing sheets for sub-orderia cross- examination exercise	10-Doi-17	1 were before next meeting		Consider Verbers will select which sub- orders are more important than others.
if.	CashShaux	Send out polito group for next months meeting date	19-00-17	13-008-17	13-06-17	
-	-			-	_	
_						

- Review Pairwise Comparison Result

- Review Next Steps

Next Steps

Carollo:


- Preliminary Ranking of Remaining Alternatives
- Identify Data Gaps and Resolve
- Update Costs and Rankings Based upon Data gaps
- Workgroup:
 - Review Preliminary Ranking of Remaining Alternatives
 - Develop list of questions/concerns 1 week prior to meeting.
- Carollo/Workshops December 11/January 8
 - Review final shortlist and criteria ranking Conduct sensitivity analysis

 - Determine final recommendation/draft summary

- General Comments by Public, Members, and Staff

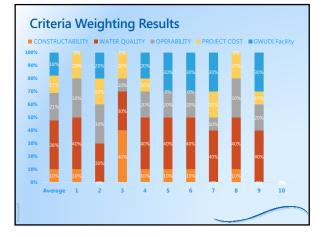
- Finalize Mission Statement
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlis
- SDA Model
- Discuss and Rank Shortlisted Alternative
- Review Data Gap
- Review Action/Decision Lo
- Review Next Steps
- General Comments by Public, Members and Staff
- Next Meeting Date: December 11, 2017 5:30 pm
- Adjournmer

- Finalize Mission Statem
- Review Pairwise Comparison Result
- Review Project Boundaries
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model
- Discuss and Rank Shortlisted Alterna
- Review Data Gaps
- Review Action/Decision Logs
- Review Next Steps
- General Comments by Public, Members and Staff
- including be
- Adjournment

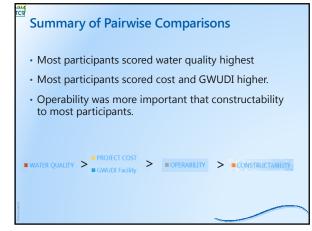
Pairwise Comparison

Base Alternatives:

- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model Development
- Discuss and Rank Shortlisted Alternatives
- Supplemental Alternatives:
 - Discuss/Review Alternatives and Carollo Shortlist
 - SDA Model Development
 - Discuss and Rank Shortlisted Alternatives
- Review Data Gaps & Action/Decision Logs
- Review Final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS

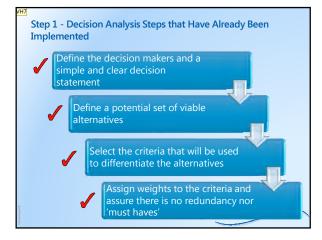

Agenda

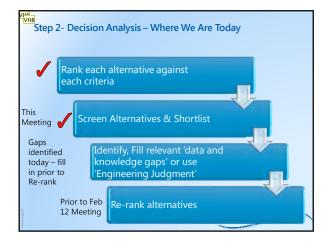
Pairwise Comparison

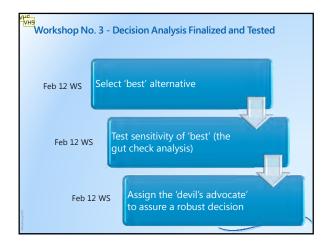

- Base Alterna
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model Development
- Discuss and Rank Shortlisted Alternativ
- Supplemental Alternatives:
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model Development
- Discuss and Rank Shortlisted Alter
- Review Data Gaps & Action/Decision Logs
- Review final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOP

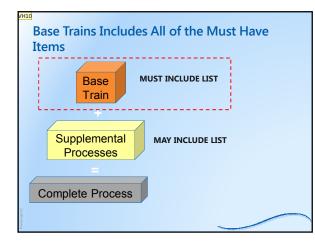
Pairwise Comparison Surveys

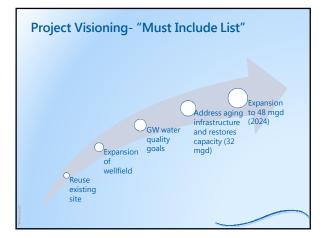
- Distributed ranking worksheets to members of Drinking Water Planning Workgroup.
- Received 10 out of 10 fully completed responses Thank you!!!



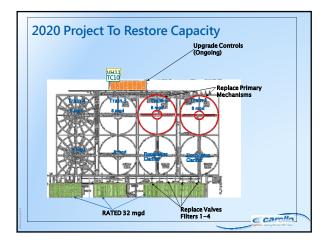

2

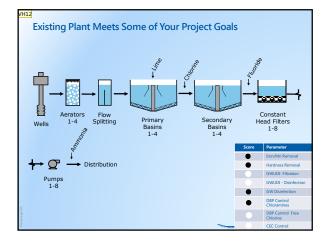


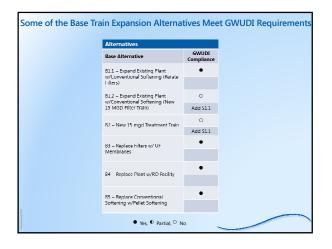


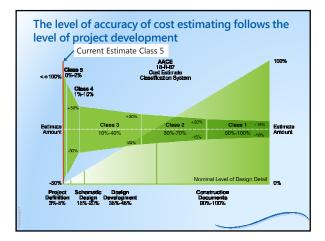


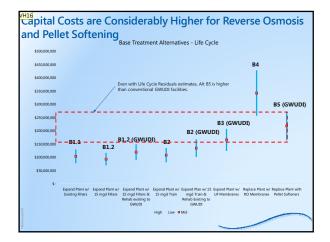
Pairwise Compar

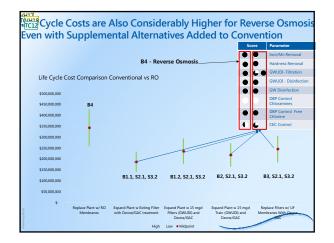

- Base Alternatives:
 - Discuss/Review Alternatives and Carollo Shortlist
 SDA Model Development
 - Discuss and Rank Shortlisted Alt
- Supplemental Alternatives:
- Discuss/Review Alternatives and Carollo Sho
- SDA Model Development
- Discuss and Rank Shortlisted Alterna
- Review Data Gaps & Action/Decision Logs
- Review Final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS

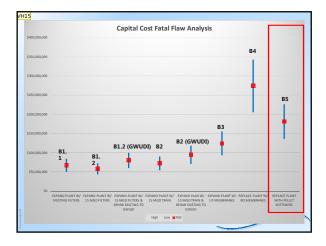


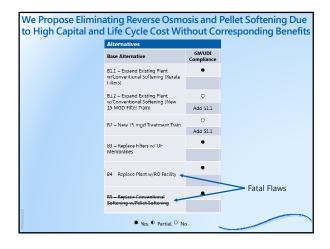


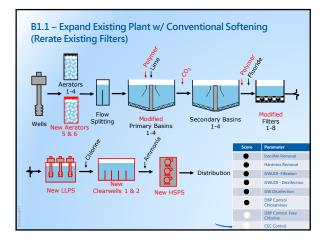


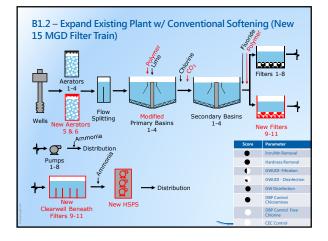


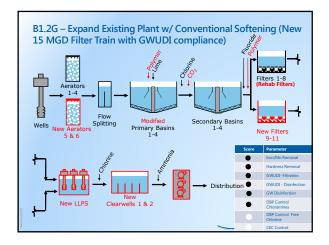


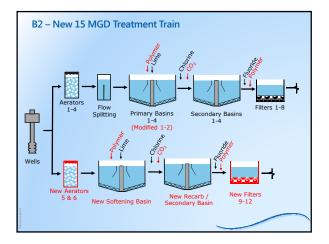

Class 5 AACE Cost Estin	nate - Order of Magnitude
Markups	Cost Development
– GCs – 8%	- 2016 Condition Assessment
 Contractor O&P – 10% 	 Historical data
- Eng. and Admin - 12%	 Market Trends
- Contingency - 50%	- Vendor Quotes
• 0&M	 Cost Estimating Manuals
- 13 MGD Average Annual Flov	v
- Current Dosages	
– \$0.08 per kWh	
- 0.25% of Capital for O&M	
All base a	Iternatives
provide a of 48 mgc	plant capacity

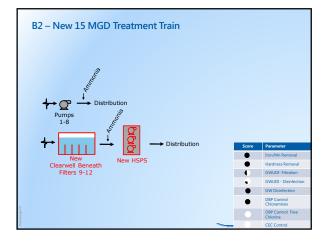


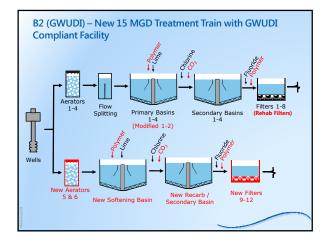


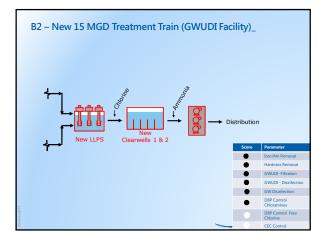


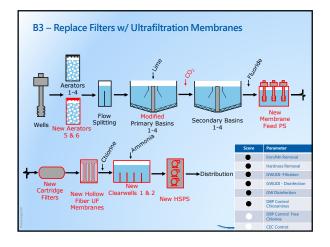


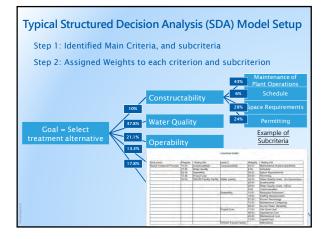


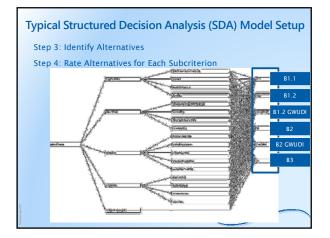




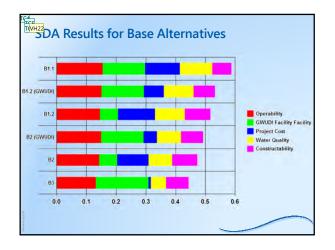


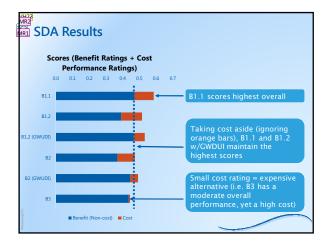


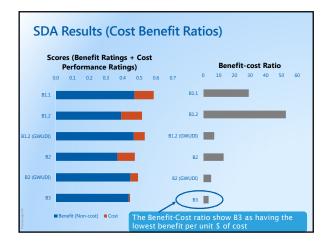


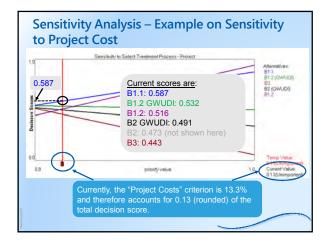


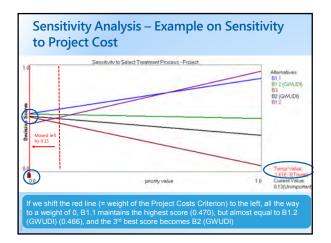


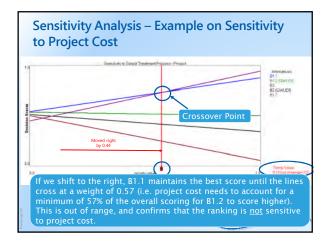












Definition of Criticality

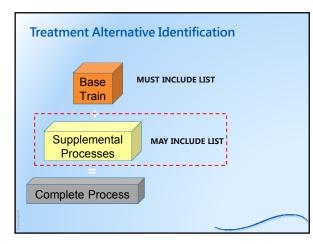
- The smallest shift necessary to affect the ranking of the 2 highest alternatives gauges the sensitivity
- That amount is called the criticality
- Project cost example:
 - Mathematically, a shift of 0.147 (to the left) would be necessary
 - The criticality is 14.7% for Project Costs. The model is therefore <u>not sensitive to the weight on Project Costs</u>.
- The criticality is assessed for all criteria weights. <u>The</u> <u>higher the criticality number, the less sensitive the</u> <u>model is to the subject criteria.</u>

Criticality of Most Sensitive Criteria

Criticality	Criterion Name	Explanation
14.7%	Project Costs	Not sensitive. The Project Cost weight would need to be negative to make B1.2 GWUDI rank higher than B1.1
14.9%	GWUDI Facility	Not sensitive. The GWUDI Facility weight would need to be reduced from 18% to 3.1% to make B1.2 rank higher than B1.1
21.7%	Constructability	Not sensitive. The Constructability weight would need to increase from 10% to 31.7% for B1.2 to rank higher than B1.1
43.5%	Sustainability	Not sensitive at all. There are no different weight that changes the ranking

Ranking Questions/Discussions

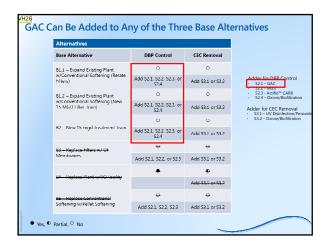
SDA Model manipulation

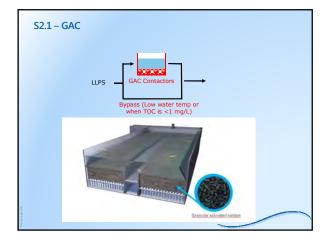

Conclusions of SDA Analysis

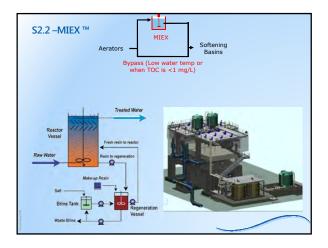
- Eliminate B3 (UF membranes) from further consideration.
- Move forward with other base alternatives to pair with supplemental alternatives.

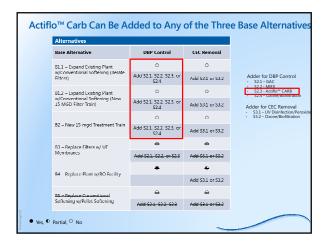
Agenda

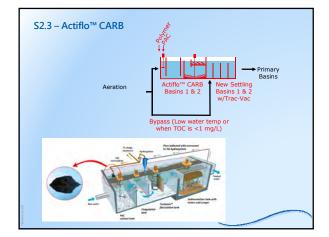
Pairwise Cor

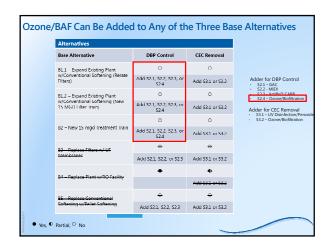

- Base Alternativ
 - Discuss/Review Alternatives and Carollo Shortlist
 - SDA Model Development
- Discuss and Mark Shore
- Supplemental Alternatives:
 - Discuss/Review Alternatives and Carollo Shortlist
 SDA Model Development
- Discuss and Rank Shortlisted Alternatives
- Review Data Gaps &
- Review Final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOP

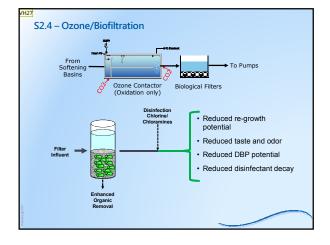




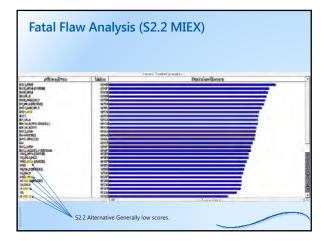


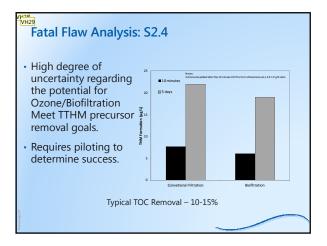

1	Alternatives			
	Sase Alternative	DBP Control	CEC Removal	
	11.1 – Expand Existing Plant	0	0	
	v/Conventional Softening (Rerate ilters)	Add S2.1, S2.2, S2.3, or S2.4	Add 53.1 or 53.2	Adder for DBP Contro
	31.2 – Expand Existing Plant	0	0	S2.2 - MIEX S2.3 - Actiflo [®] CARB S2.4 - Ozone/Biofiltra
1	v/Conventional Softening (New .5 MGD Filter Train)	Add \$2.1, \$2.2, \$2.3, or \$7.4	Add S3.1 or S3.2	Adder for CEC Remova
		0	0	 S3.1 – UV Disinfection, S3.2 – Ozone/Biofiltrat
E	32 – New 15 mgd Treatment Train	Add 52.1, 52.2, 52.3, or 52.4	Add \$3.1 or \$3.2	
E	3 Replace Filters w/ UF	φ.	4	
•	Aembranes	Add 523, 522, or 523	Add S3.1 or S3.2	
	4 Replace Plant w/RO Facility	•	÷	
	in applied that it, no reality		Add S3.1 or S3.2	
	85 Replace Conventional	٩	4	
8	ottening w/Pellot Sottening	Add 52.1, 52.2, 52.3	Add S3.1 or S3.2	







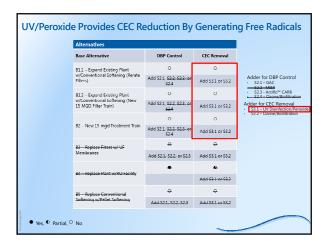




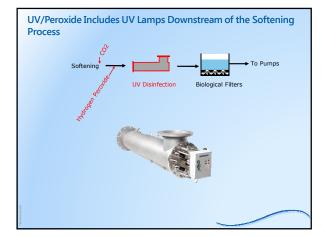
MIEX Creates a Brine Waste and the Amount of Regeneration Required is Extreme

- Eliminate MIEX S2.2:
 - Permitting- Brine Stream Disposal
 - Operability- More complicated control than other DBP control technology.
 - Potential for resin loss resulting in \$\$\$\$\$ (overflow)
 - Constructability Difficult integration within existing processes.
 - Life Cycle Cost: Low Bed Volumes
 - Higher resin replacement rate
 - Higher brine generation

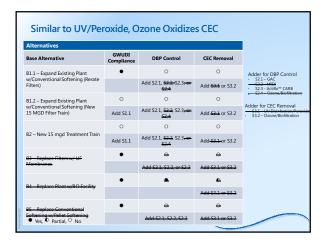
	1227	Mittale States				
NORMAL STREET, NO. 100	-	State Colores				
Liter/raft	85	20	4.75	Xie	180	
datah (104/April Aloy	35.4	40	2.2%	24	ýnc/	
104059798510808	74	394	-100	114	152	
di.	728	698	335	610	3.4	
-tank constitute	-10	26	T	- 18	- à	
A STATE	Diff	105	50	-18	385	
Er-Enlage Sector (Sector)	35	24	140	*	- 34	
Waser's	6,50	646	1450	363	746	
100-1	1185	21920	6.98	inter.	0.35	



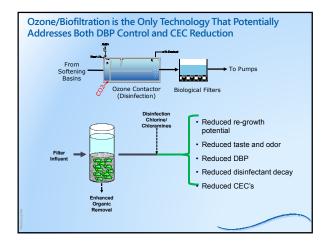
Alternatives			
Base Alternative	DBP Control	CEC Removal	
B1.1 - Expand Existing Plant	0	0	
w/Conventional Softening (Rerate Filters)	Add 52.1, <u>52.2, 52.1, or</u> <u>\$2.4</u>	Add \$3.1 or \$3.2	Adder for DBP Control S2.1 - GAC
B1.2 – Expand Existing Plant	0	0	 S2.3 - Actiflo[™] CARB S2.4 Oxene/Riefitration
w/Conventional Softening (New 15 MGD Filler Train)	Add S2.1, S2.2, S2.3, or S2.4	Add \$3.1 or \$3.2	Adder for CEC Removal
	0	0	 S3.1 – UV Disinfection/Perox S3.2 – Ozone/Biofiltration
82 – New 15 mgd Treatment Train	Add 52.1, <u>53.3, 53.3, ee</u> 844	Add \$31 or \$32	
133 – Replace Lillers w/ UI	4	Δ	
Membranes	Add S2.1, S2.2, or S2.3	Add \$3.1 or \$3.2	
B4 Replace Plant w/RO Facility	*	£	
64 Replace Hant W/RO Pacility		Add \$3.1 or \$3.2	
Eb Koplace Lonventional	4	₽	
Softoning w/Pollot Softoning	Add 521, 522, 523	Add 52.1 or 52.3	



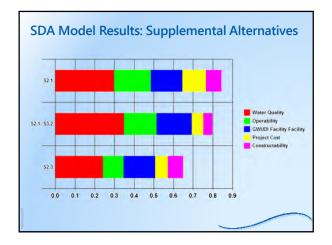
Without Fatal Flaws			
Base Alternative	DBP Control	CEC Removal	
B1.1 – Expand Existing Plant	0	0	Adder for DBP Control
w/Conventional Softening (Rerate Filters)	Add S2.1, <u>\$2.2,</u> S2.3, or <u>\$2.4</u>	Add \$3.1 or \$3.2	S2.1 – GAC S2.2 – MIEX S2.3 - Actiflo™ CARB
B1.2 – Expand Existing Plant	0	0	- 52.4 Ozene/Biefiltration
w/Conventional Softening (New 15 MGD Filter Train)	Add S2.1, 52.2 , S2.3 , or 52.4	Add \$3.1 or \$3.2	Adder for CEC Removal S3.1 – UV Disinfection/Pero S3.2 – Ozone/Biofiltration
	0	o	
B2 – New 15 mgd Treatment Train	Add S2.1, 52.2 , S2.3 , or <u>52.4</u>	Add \$3.1 or \$3.2	
82 Replace Filters w/ UF	e	≙	
Membranes	Add 52.1, 52.2, or 52.2	Add 52.1 or 52.2	
84 - Roplace Plant w/RO Facility	•	÷	
,,,		Add S2.1 or S2.2	
85 Replace Conventional		÷	
Yes, Partial, No	Add 52.1, 52.2, 52.2	Add 53.1 or 53.2	



We Recommend Eliminating UV/Peroxide From Consideration

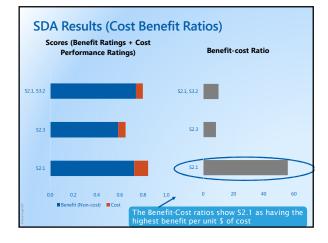

- UV before filtration for removal of assimilable organic carbon (AOC).
- UV Downstream of Softening Has Caused Precipitation Problems (Binney)
- If UV/peroxide is after traditional filtration - GAC Contactors are required (for stabilization). More Costly

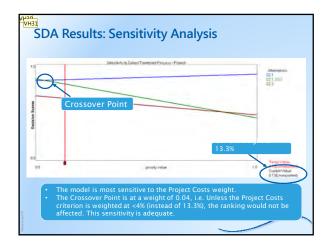
Softening



Supplemental Processes Considered

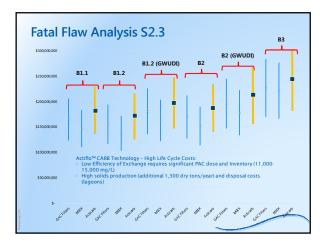

- S2.1 GAC Filters
- S2.3 Actiflo™ CARB Technology
- S2.1 and S3.2- Ozone/Biofiltration followed by GAC



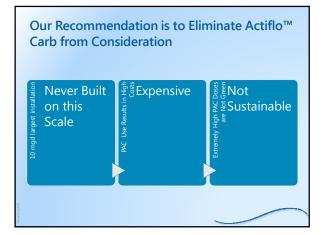


 Criticality of Most Sensitive Criteria

 2010
 Criticality Criterion Name Explanation


 9.6%
 Project Costs
 Not very sensitive. The Project Cost weight would need to be reduced from 13% to 3.4% to make \$2.1, \$3.2 rank higher than \$2.1

 14.6%
 Constructability
 Not sensitive. The Constructability weight (10%) would need to go negative to make \$2.1, \$3.2 rank higher than \$2.1


 16.4%
 Water Quality
 Not sensitive. The Water Quality weight would need to increase from 38% to 54% to make \$2.1, \$3.2 rank higher than \$2.1

 25.8%
 GWUDI Facility
 Not sensitive. The GWUDI Facility weight would need to increase from 18% to 42% to make \$2.1, \$3.2 rank higher than \$2.1

Ranking Questions/Discussions

SDA Model manipulation

Preliminary Ranking and Alternatives Summary:

Base Concepts:

B1.1 – Expand Existing Plant w/Conventional Softening (Rerate Filters)

B1.2 – Expand Existing Plant w/Conventional Softening (New 15 MGD Filter Train)

B2 – New 15 mgd Treatment Train

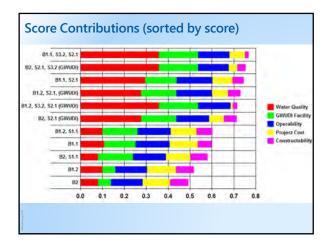
Supplimental Concepts:

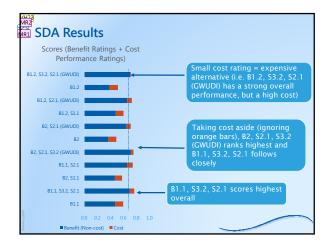
S1.1– Include improvements for GWUDI Compliance S2.1 – GAC Filters

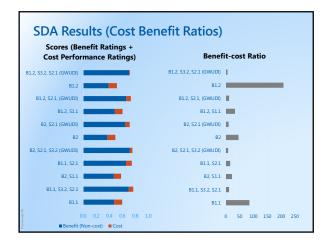
S2.1 and S3.2 – Biofiltration with GAC filters

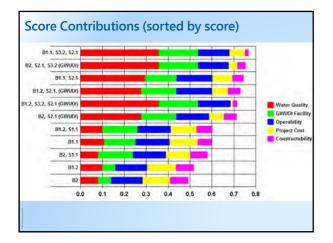
S2.1 and S3.2 – Bionitration with GAC filter

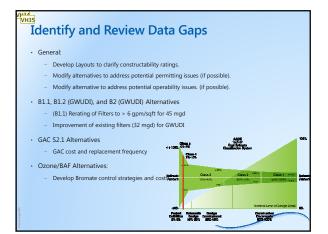
ireatment Alternatives							
Base	Supplement	Description	Comments				
B1.1	No Supplement	Only Upgrade Existing	GWUDI Compliant, Requires Chloramines				
B1.1	S2.1	Upgrade Existing With GAC Contactors	GWUDI Compliant Permits use of Free Chlorine				
B1.1	S2.1, S3.2	Upgrade Existing with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine				
B1.2	No Supplement	New Filters (15mgd)	Not fully GWUDI Compliant Requires Chloramines				
B1.2	S1.1	New Filters (15 mgd) with plant upgraded	GWUDI Compliant Requires Chloramines				
B1.2	S1.1, S2.1	New Filters (15 mgd) with GAC Contactors	GWUDI Compliant Permits use of Free Chlorine				
B1.2	S1.1, S2.1, S3.2	New Filter (15 mgdd) with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine Adds CEC's				
B2	No Supplement	New Treatment Train (15 mgd)	Not fully GWUDI Compliant Requires Chloramines				
B2	S1.1	New Treatment Train (15 mgd) with plant upgraded.	GWUDI Compliant Requires Chloramines				
B2	S1.1, S.2.1	New Treatment Train (15 mgd) and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine				
B2	S1.1, S2.1, S3.2	New Treatment Train (15 mgd) with Ozone/BAF and GAC Contactors	GWUDI Compliant Permits use of Free Chlorine Adds CEC's				
		Ozone/BAL and GAC Contactors					










Pairwise Com

Base Alternativ

- Discuss/Review Alternatives and Carollo Sh
- SDA Model Development
- Discuss and Rank Shorth
- Supplemental Alternatives:
- Discuss/Review Alternatives and Carollo Sh
- SDA Model Developmer

Review Data Gaps & Action/Decision Logs

- Review Final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS

			DECISION LOG		C camil
	Pasiece Cliese Joh B Testicert	Den Comma M	lumer lindet - Place Veli stose 0	MPEATED NO.	2019
m.	OCCUSION BY	CECCUM TORUM	UCCERTA ULSCHIPTICH	DEC-SIGN	contexts
	Dis	Tanklail Manage	Financial scale posts posts to Oktobe that there the enhanced scill values	8.640.0	
н	Dey-	Tanthal Mesing	Framed wave guilty goals for Economical DEP's shall mentilise attracted VG salars	7649-0	
	01	Trustial Merrory	Triumind Game quality goals for CEC's in aprover second hegolating calves on the milking of VD values.	sit.	
	Day	Tampad Menorg	Final head water quality goals for Oxforament may meet	mig-1	
#	Oq.	Epsthal Mirroy	Finished wave quality goals for Founds shak meet research	354-5	
	Capitan .	Contract Meeting	Men meeting oil be held at the Mollaine WTIT at 5.18 pm with a plant loss before	3947	
	Day	Tauni 4 Manard	The goog scool is in a matrix statement	DAte 9	
25	Cay	Toutual Name	The poor speec had more particle comparison (and/o) to compare the provide a large costs among an operation of operations.	0.Mat	
21	Districe.	Constal Meeting	The going agreed to alimit all RED true the full of base alimitatives	11.48m-87	
=	OrgContest	Trustel teams	The group agents to similar in Polar Streamy south the loss of hims alternations:	DANe.	
22	Options	Trunk Harry	The programment is electricale Autobart Count Have Re-for of Experimental infect price) for CEP County).	ri-Mou-IT	
24	Cistence	Tooldal Naveral	The gring agrees to trag and air MEX.m abertations that	UABe-U	

		ACTIC	N ITEM			<u>€</u> carollo
		Presiminary Design Report Splate - Report Visionshote City of Columbia, MO				nanogarz BH
111	RE SPONSER I	ACTION	TTEM	1ANCET KI.SOLUTION DATE	COMPLETION DATE	COMMENTS
1	Carolo	Prevela brider containing part and future meterial to conmittee membran	11-349-17	dia 17	10-0(6-17	
2	Carolo	Notify and present masion estement at the next meeting for approve	11/Sep-17	0di 17	10-Dct-17	
0	Shave	Send out poll to group for next months meeting date with October 15 being the preformed date.	11-Sep-17	Sep-17	12-Sep-17	
4	Carolo	Send out uppleted musich statement	10-065-17	13-08-17	12-06-17	
6	Generatives	Send but staring sheets for sub-orders pross-evaluation relations	10-0(8-17	13-08-17	12-0(9-17	
4	Cay .	Fit out and return scoring sheets for sub-orderia cross- examination exercise	10-Dol-17	1 wers before Asiat meeting		Consider Verbers will aren't which sub- orders are more important than others.
(f	CashShave	Send out poil to group for next months meeting date	10-00-17	13-005-17	13-06-17	
_				-		

 ,

Pairwise Compar

- Base Alternatives:
 - Discuss/Review Alternatives and Carollo Shortlist
 - SDA Model Development
 - Discuss and Rank Shortlis
- Supplemental Alternatives:
- Discuss/Review Alternatives and Carollo Shortlist
- SDA Model Deve
- enscuss and Kank Shortifsted Alternatives
- Review Data Gaps & Action/Decision Log
- Review Final Steps
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS

Final Steps

Carollo:

- Update Costs and Rankings Based upon Data gap Resolution
- Final Ranking
- Prepare Draft and Final Technical Memorandum Update

Workgroup:

- Review Final Ranking and make Recommendation to Water and Light Dept
- Participate in Public Meeting

Agenda

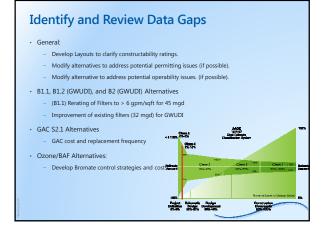
Painwise Com

- Race Alternative
 - Discuss/Review Alternatives and Carollo Sho
 - SDA Model Development
 - Discuss and Rank Shortlisted
- Supplemental Alternatives:
 - Discuss/Review Alternatives and Carollo Shortlist
 - SDA Model Development
- Discuss and Rank Shortlisted Alternatives
- eview Data Gaps & Action/Decision Log
- Review Final Step
- · General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS
 February 12, 2017 5:30 pm ?

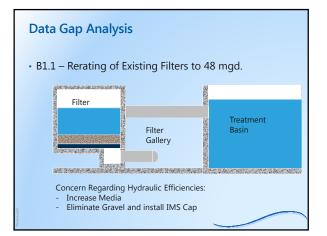
Agenda

Pairwise ComparisonBase Alternatives:

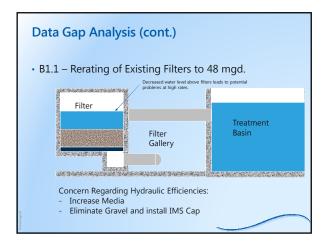
- Discuss/Review Alternatives and Carollo Shortlist
- CD4 Madel Development
- Discuss and Rank Shortlin
- Supplemental Altomatives
- Discuss/Review Alternatives and Carolle Short
- SDA Model Development
- Discuss and Rank Shortlisted Alterna
- Review Data Gaps & Action /Decision Loss
- Review Final Sten
- General Comment by Public, Members, and Staff
- Next Meeting Date FINAL DECISION MAKING AND PUBLIC SUMMARY WORKSHOPS
 February 12, 2017 5:30 pm ?

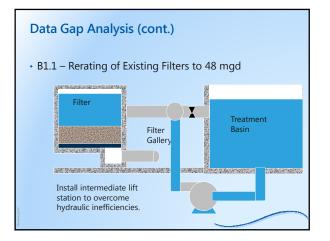


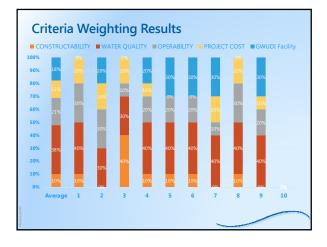
Data Gap Analysis


- Discuss/Review Shortlisted Alternatives
 - Review Results from Last Meeting
 - Discuss Shortlist Methodology and Shortlisted Alternatives
 - Re-Ranking of Shortlisted Alternatives
 - Select Best Alternatives
 - Sensitivity/Sensibility Check
- Discuss/Review Finalized Recommendation Statement
- General Comment by Public, Members, and Staff
- Next Meeting Date:
 - Public Meeting/Presentation

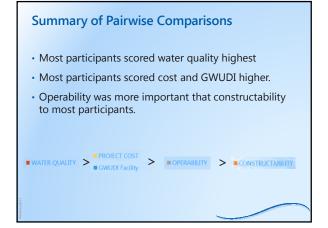
Agenda

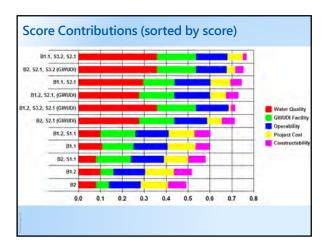

- Discuss/Review Shortlisted Alternatives
- Review Results from Last Meeting
- Discuss Shortlist Methodology and Shortlisted Alter
- Re-Ranking of Shortlisted Alter
- Select Best Alternatives
- Sensitivity/Sensibility Check
- Discuss/Review Finalized Recommendation Statement
- General Comment by Public, Members, and Staff
- Next Meeting Date:
- Public Meeting/Presentation



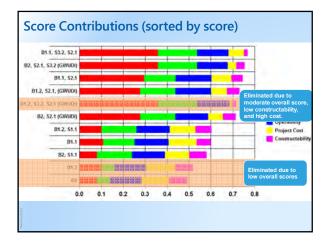


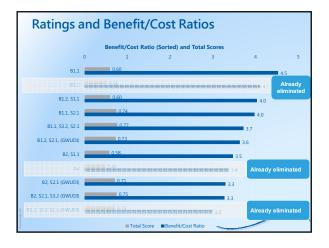
Data Gap Analysis: S2.1 GAC Contactors

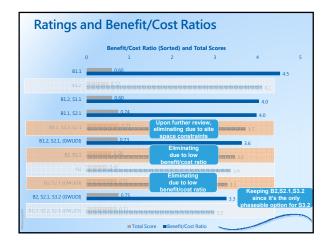

- RSSC (rapid small-scale column) testing required to identify potential Carbon's to test.
- Pilot testing required to determine useful life for DBP management.
- Assumed Carbon Life based upon similar Communities: Every 3 years.


Agenda

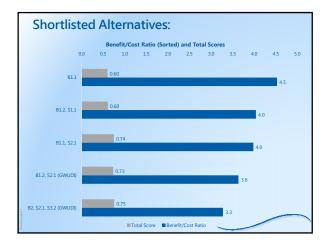
- Discuss/Review Shortlisted Alternatives
 - Review Results from Last Meeting
 - Discuss Shortlist Methodology and Shortlisted Alternatives
 - Re-Ranking of Shortlisted Alternatives
 - Select Best Alternatives
 - Sensitivity/Sensibility Check
- Discuss/Review Finalized Recommendation Statement
- General Comment by Public, Members, and Staff
- Next Meeting Date:
- Public Meeting/Presentation

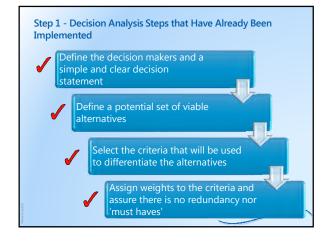




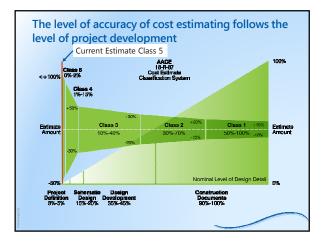


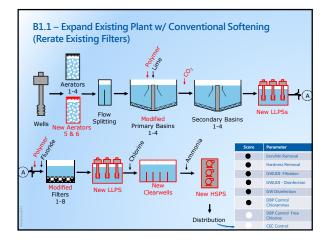
Summary from Last Meeting


- 3 alternatives <u>not</u> short-listed: B2, B1.2, and B1.2,S3.2,S2.1 (GWUDI)
- Because of Water Quality and GWUDI high rating, results ranked highest cost items because those naturally provided highest benefit.
- However... when examining benefit/cost ratios some of these items were clearly offered little additional benefit with high incremental costs.
- Decision was made to re-rank based upon best benefit: cost ratio plus those alternatives most easily phased to the higher cost alternatives.



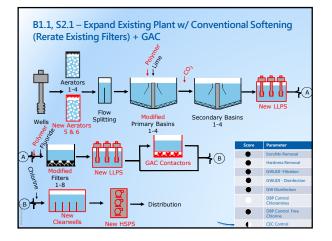
Shortlist Rationale


- All alternatives that did not meet GWUDI Eliminated due to low benefit score.
- Alternatives involving Ozone/biofiltration eliminated:
 Low Cost/Benefit Ratios
 - Ability to phase is extremely poor (exception B2)



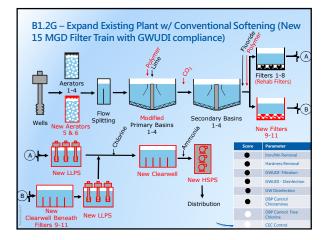
Life Cycle Cost Development:

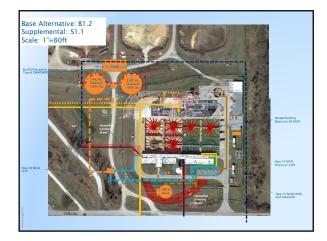
- Phase 0: 2020
- Phase I: 2024
- Phase II: 2029 (assumes 5 year period to pilot/design/construct)
- End of Life Cycle Period: 2044 (20 years from Phase I)



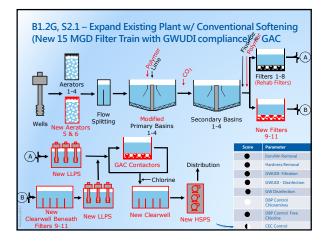
		_
		_
		_
		_

B1.1 Highlights	isting Plant (Rerate Exis	iting Filters)
Water Quality (37.8%) Likely requires chioramines to satisfy current Disinfection By- Product regulations. Potential future regulatory concerns (ECC's) will need additional processes. No significant improvement in	Operability (21.1%) Increased Maintenance (New Pumps) Low Lift Pumps Required to Control Filtration Process and pump to clearvells, increasing complexity. Most efficient use of space	GWUDI Facility (17.8% • Improved Filtration • Disinfection to meet SWTR Requirements
overall water quality (Except for GWUDI Compliance)	(estier chasino) Constructability (10%) Large Disruption to Plant Ops (Work on Existing Filters) Minimal footprint of new facilities. Rerating Filters Requires Permitting Variance	Project Cost (13.3%) Capital = \$106 million OAM = \$3.6 million Life Cycle = \$160 million 'Level of Accuracy (+50% to -30%) "Willidad & Baw Water pipeline improvements not included.

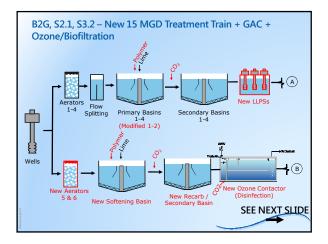


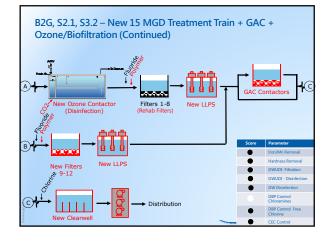



Description: Expand Ex Post Filter GAC Contact	isting Plant (Rerate Exis ors	ting Filters) and Add
Water Quality (37.8%) Ability to design finished water quality to meet DBP regulations without relying on Chloramines. Robust process that will remove some CEC's. Operating Cost may be impacted by	Operability (21.1%) • Additional Staffing • Staffing Education for New Processes (DBP Control) • Increased Maintenance (New Pumps and Process) • Moderate Complexity	GWUDI Facility • Fully Compliant
future regulations due to process inefficiencies.	Constructability (10%) Large Disruption to Plant Ops (Work on Existing Filters) Large Space Requirements will require some of lagoon space. Rerating Filters Requires Permitting Variance	Project Cost (13.3%) • Capital = 5152 million • O&M = 54.7 million • Life Cycle = 5221 million *Level of Accuracy (+ 50% to -30%) *Welffields Raw Water pipline improvements not included.

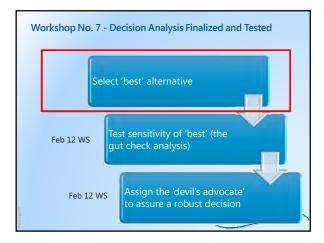


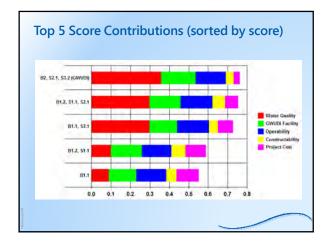
B1.2, S1.1 (GWUDI) Highlights <u>Description:</u> Expand Existing Plant (New Filter Train)		
Water Quality (37.8%) Likely requires chloramines to satisfy current Disinfection By- Product regulations. Potential future regulatory concerns (CEC's) will need additional processes. No significant improvement in	Operability (21.1%) Increased Maintenance (New Pumps and Filters) Minimal Complexity Low Lift Pumping Required for phasing and to minimize future construction costs. A little more difficult to phase.	GWUDI Facility (17.8%) • Fully Compliant
overall water quality (Except for GWUDI Compliance)	Constructability (10%) Moderate Disruption to Plant Ops Moderate Space Requirements	Project Cost (13.3%) Capital = \$124 million O&M = \$3.6 million Life Cycle = \$178 million Life Cycle = \$178 million Wellfield & Raw Water pipeline Improvements not included.



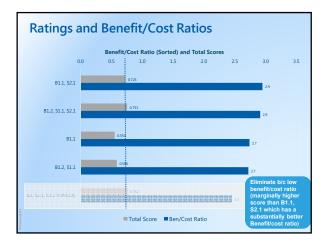


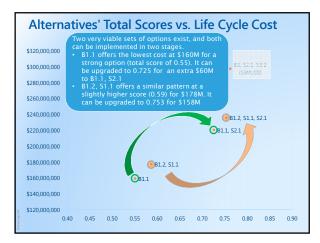
B1.2, S1.1(GWUDI), S2.1 Highlights <u>Description:</u> Expand Existing Plant (New Filter Train) and Add GAC Post Filter Contactors.		
Water Quality (37.8%) • Ability to design finished water quality to meet DBP regulations without relying on Chloramines. • • Robust process that will remove some ECE's. Operating Cost may be impacted by •	Operability (21.1%) Additional Staffing Staffing Education for New Processes Increased Maintenance (New Pumps, Filters, and Process) Moderate Complexity	GWUDI Facility (17.8%) • Fully Compliant
future regulations due to process inefficiencies.	Constructability (10%) Moderate Disruption to Plant Ops Large Space Requirements	Project Cost (13.3%) Capital = \$166 million O&M = \$4.7 million Life Cycle = \$236 million 'Level of Accuracy (+30% to -30%) 'Wellfield & Raw Water pipeline improvements not included.

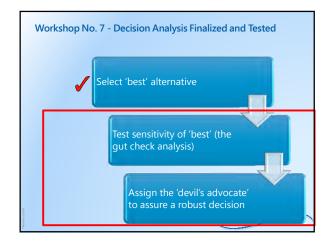


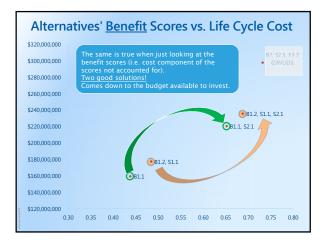


B2 (GWUDI), S2.1, S3.2 Highlights		
Description: Expand Existing Plant (New Treatment Train), post treatment Ozone/Biofiltration and post filter GAC contactors.		
Water Quality (37.8%) Ability to design finished water quality to meet DBP regulations without relying on Chloramines. Best Available Technology for CEC removal. Symergistic impacts with Post Filter GAC.	Operability (21.1%) Additional Staffing Staffing Education for New Processes Increased Maintenance (New Pumps, Filters, and Processes) Most Complex Alternative to Operate (two trains with multitole norresses)	GWUDI Facility (17.8%) • Fully Compliant
	Constructability (10%) Minimal Disruption to Plant Ops High Space Requirements	Project Cost (13.3%) Capital = \$223 million O&M = \$5.1 million Life Cycle = \$298 million 'Level of Accuracy (~50% to ~50%) "Wellfield & Raw Water pipeline improvements not included.

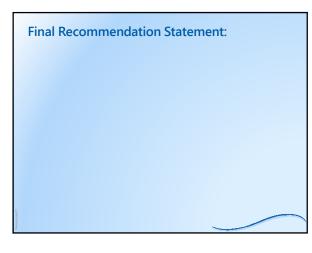








- Discuss/Review Shortlisted Alternatives
- Review Results from Last Meeting
- Discuss Shortlist Methodology and Shortlisted Alternative
- Re-Ranking of Shortlisted Alternative
- Select Best Alternatives
- Sensitivity/Sensibility Check
- Discuss/Review Finalized Recommendation Statement
- General Comment by Public, Members, and Staff
- Next Meeting Date:
- Public Meeting/Presentation


Adopted Mission Statement and Goals

FINAL Braft MissionStatements for Drinking Water Planning Warfgroup:

singen stressment Freedergiewing resonant exclutions to the Water and Light Advisory therein and the City Council repetiding the expression of Hierareit to extra sets and the stability water and Hygoold, distortioning summatic citization and annual sets of stress stress stability assessment of the interfa-tion of the stress stress stress and the stress stre stress str

The foods of the Difficient Matter Planning Managers, and experience

- Instock of the DiAlong Matter Planning Mantgroup one enfoltence:
 Enderweisent planning storagins between entry learning to the planning storaging between entry learning storaging between entry learning storaging between entry learning to the planning planning planning between entry learning between entry learni

Agenda

- General Comment by Public, Members, and Staff

- Public Meeting/Presentation

- Discuss/Review Shortlisted Alternative
- Review Results from Last Meeting
- Discuss Shortlist Methodology and Shortlisted Alternative
- Re-Ranking of Shortisted
- Select best Arternatives
- -------
- Discuss/Review Finalized Recommendation Statement
- General Comment by Public, Members, and Staff
- Next Meeting Date:
 - Public Meeting/Presentation

Appendix F DWPWG RECOMMENDATIONS

Columbia Utilities Columbia Terminal Railroad

DATE:	March 9, 2018
TO:	Mayor and City Council Water and Light Advisory Board
FROM:	Terry Merritt, Chair Serge When Merritt, Chair Serge When Merritt, Chair Drinking Water Planning Work Group

RE: Final Recommendations of the Drinking Water Planning Work Group

In April 2017, the Drinking Water Planning Work Group was established to assist in the update of the 2011 Water Treatment Plant Expansion Preliminary Design Report and was tasked with the following:

- Reviewing current drinking water regulations, including what types of disinfection methods comply with regulations.
- Reviewing Columbia's current water supply conditions.
- Assessing the current state of utility industry and customer-side water treatment technology and costs.
- Reviewing and providing input on developed recommendations.
- Developing drinking water planning recommendations.

The Work Group met a total of eight times with the final meeting on February 26th, 2018.

The Work Group's findings were as follows:

- The McBaine Water Treatment Plant (McBaine WTP) should consider processes that meet requirements for a Groundwater Under Direct Influence (GWUDI) facility.
- The McBaine WTP should utilize treatment technologies to achieve disinfection byproduct (DBP) compliance without the use of chloramines and to also assist in removal of Contaminants of Emerging Concern (CECs).

The following recommendations were finalized at the meeting on February 26th with all members in favor, excluding Mr. Karl Skala, who abstained his vote:

• Priority should be given to first restoring the plant to its 32 MGD capacity prior to increasing capacity to 48 MGD.

- The base alternatives of B1.1, B1.2, and B2 should be evaluated with the supplemental processes given to achieve improved water quality through a phased approach.
- The design on the selected alternative should begin no later than 2020, as indicated in Carollo's report, to be in operation no later than 2024, unless design and construction are able to be accomplished sooner.
- In order to improve water quality while the new process train is in design and construction, repair and/or enhancement of the current filters and pilot testing done to make every effort to return to free chlorine disinfection.
- The rehabilitation and/or enhancement initiatives outlined in the Condition Assessment will address deficiencies in the facility and system and request an updated timeline for these initiatives be produced by Water and Light.

The Drinking Water Planning Work Group respectfully submits the above recommendations for serious consideration by the Water and Light Advisory Board and Mayor and City Council.